Suppr超能文献

未缀合量子点的癌细胞表型依赖性细胞内差异运输

Cancer-cell-phenotype-dependent differential intracellular trafficking of unconjugated quantum dots.

作者信息

Barua Sutapa, Rege Kaushal

机构信息

Department of Chemical Engineering, Arizona State University, Tempe, AZ 85287-6006, USA.

出版信息

Small. 2009 Mar;5(3):370-6. doi: 10.1002/smll.200800972.

Abstract

A diverse array of nanoparticles, including quantum dots (QDs), metals, polymers, liposomes, and dendrimers, are being investigated as therapeutics and imaging agents in cancer diseases. However, the role of the cancer-cell phenotype on the uptake and intracellular fate of nanoparticles in cancer cells remains poorly understood. Reported here is that differences in cancer-cell phenotypes can lead to significant differences in intracellular sorting, trafficking, and localization of nanoparticles. Unconjugated anionic QDs demonstrate dramatically different intracellular profiles in three closely related human-prostate-cancer cells used in the investigation: PC3, PC3-flu, and PC3-PSMA. QDs demonstrate punctated intracellular localization throughout the cytoplasm in PC3 cells. In contrast, the nanoparticles localize mainly at a single juxtanuclear location ("dot-of-dots") inside the perinuclear recycling compartment in PC3-PSMA cells, where they co-localize with transferrin and the prostate-specific membrane antigen. The results indicate that nanoparticle sorting and transport is influenced by changes in cancer-cell phenotype and can have significant implications in the design and engineering of nanoscale drug delivery and imaging systems for advanced tumors.

摘要

包括量子点(QD)、金属、聚合物、脂质体和树枝状大分子在内的各种各样的纳米颗粒,正作为癌症疾病的治疗和成像剂进行研究。然而,癌细胞表型对癌细胞中纳米颗粒摄取和细胞内命运的作用仍知之甚少。本文报道癌细胞表型的差异可导致纳米颗粒在细胞内分选、运输和定位的显著差异。未缀合的阴离子量子点在研究中使用的三种密切相关的人前列腺癌细胞(PC3、PC3-flu和PC3-PSMA)中表现出截然不同的细胞内分布。量子点在PC3细胞的整个细胞质中呈现点状细胞内定位。相比之下,纳米颗粒主要定位于PC3-PSMA细胞内核周循环隔室内的单个近核位置(“点点”),在那里它们与转铁蛋白和前列腺特异性膜抗原共定位。结果表明,纳米颗粒的分选和运输受癌细胞表型变化的影响,对晚期肿瘤纳米级药物递送和成像系统的设计与工程具有重要意义。

相似文献

2
The influence of mediators of intracellular trafficking on transgene expression efficacy of polymer-plasmid DNA complexes.
Biomaterials. 2010 Aug;31(22):5894-902. doi: 10.1016/j.biomaterials.2010.04.007. Epub 2010 May 8.
4
Cellular Delivery of Bioorthogonal Pretargeting Therapeutics in PSMA-Positive Prostate Cancer.
Mol Pharm. 2020 Jan 6;17(1):98-108. doi: 10.1021/acs.molpharmaceut.9b00788. Epub 2019 Dec 16.
5
Uptake and Transport of Ultrafine Nanoparticles (Quantum Dots) in the Nasal Mucosa.
Mol Pharm. 2021 Jan 4;18(1):429-440. doi: 10.1021/acs.molpharmaceut.0c01074. Epub 2020 Dec 21.
6
Cytoplasmic Localization of Prostate-Specific Membrane Antigen Inhibitors May Confer Advantages for Targeted Cancer Therapies.
Cancer Res. 2021 Apr 15;81(8):2234-2245. doi: 10.1158/0008-5472.CAN-20-1624. Epub 2021 Feb 23.
8
Synthesis and Preliminary Biological Assessment of Carborane-Loaded Theranostic Nanoparticles to Target Prostate-Specific Membrane Antigen.
ACS Appl Mater Interfaces. 2021 Nov 24;13(46):54739-54752. doi: 10.1021/acsami.1c16383. Epub 2021 Nov 9.
9
Cellular uptake and intracellular degradation of poly(alkyl cyanoacrylate) nanoparticles.
J Nanobiotechnology. 2016 Jan 8;14:1. doi: 10.1186/s12951-015-0156-7.
10
Intracellular distribution of nontargeted quantum dots after natural uptake and microinjection.
Int J Nanomedicine. 2013;8:555-68. doi: 10.2147/IJN.S39658. Epub 2013 Feb 4.

引用本文的文献

1
Cytotransducers for Visualization of Spatiotemporal Intercellular Communication.
Small. 2025 Sep;21(35):e2503749. doi: 10.1002/smll.202503749. Epub 2025 Jun 9.
2
PSMA-Targeted 2-Deoxyglucose-Based Dendrimer Nanomedicine for the Treatment of Prostate Cancer.
Biomacromolecules. 2024 Sep 9;25(9):6164-6180. doi: 10.1021/acs.biomac.4c00878. Epub 2024 Aug 20.
4
A PSMA-targeted doxorubicin small-molecule drug conjugate.
Bioorg Med Chem Lett. 2024 May 15;104:129712. doi: 10.1016/j.bmcl.2024.129712. Epub 2024 Mar 21.
5
Advances in PSMA theranostics.
Transl Oncol. 2022 Aug;22:101450. doi: 10.1016/j.tranon.2022.101450. Epub 2022 May 18.
7
MNPs-IHSPN nanoparticles in multi-application with absorption of bio drugs in vitro.
Biochem Biophys Rep. 2021 Oct 23;28:101159. doi: 10.1016/j.bbrep.2021.101159. eCollection 2021 Dec.
8
Brief update on endocytosis of nanomedicines.
Adv Drug Deliv Rev. 2019 Apr;144:90-111. doi: 10.1016/j.addr.2019.08.004. Epub 2019 Aug 13.
9
In Vitro Study of Influence of Au Nanoparticles on HT29 and SPEV Cell Lines.
Nanoscale Res Lett. 2017 Aug 15;12(1):494. doi: 10.1186/s11671-017-2264-9.
10
Recent progress on magnetic nanoparticles for magnetic hyperthermia.
Prog Biomater. 2016 Dec;5(3-4):147-160. doi: 10.1007/s40204-016-0054-6. Epub 2016 Sep 6.

本文引用的文献

2
Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers.
Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2586-91. doi: 10.1073/pnas.0711714105. Epub 2008 Feb 13.
3
Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells.
Biomacromolecules. 2008 Feb;9(2):435-43. doi: 10.1021/bm700535p. Epub 2008 Jan 12.
4
Selective prostate cancer thermal ablation with laser activated gold nanoshells.
J Urol. 2008 Feb;179(2):748-53. doi: 10.1016/j.juro.2007.09.018. Epub 2007 Dec 20.
7
Aberrant receptor signaling and trafficking as mechanisms in oncogenesis.
Crit Rev Oncog. 2007 Aug;13(1):39-74. doi: 10.1615/critrevoncog.v13.i1.20.
9
Efficacy of laser-activated gold nanoshells in ablating prostate cancer cells in vitro.
J Endourol. 2007 Aug;21(8):939-43. doi: 10.1089/end.2007.0437.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验