文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Recent progress on magnetic nanoparticles for magnetic hyperthermia.

作者信息

Kafrouni Lina, Savadogo Oumarou

机构信息

Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succursale Centre-ville, Montreal, QC, H3C 3A7, Canada.

Laboratory of New Materials for Energy and Electrochemistry Systems (LaNoMat), Montreal, Canada.

出版信息

Prog Biomater. 2016 Dec;5(3-4):147-160. doi: 10.1007/s40204-016-0054-6. Epub 2016 Sep 6.


DOI:10.1007/s40204-016-0054-6
PMID:27995583
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5304434/
Abstract

Recent advances in nanomaterials science contributed to develop new micro- and nano-devices as potential diagnostic and therapeutic tools in the field of oncology. The synthesis of superparamagnetic nanoparticles (SPMNPs) has been intensively studied, and the use of these particles in magnetic hyperthermia therapy has demonstrated successes in treatment of cancer. However, some physical limitations have been found to impact the heating efficiency required to kill cancer cells. Moreover, the bio-safety of NPs remains largely unexplored. The primary goals of this review are to summarize the recent progress in the development of magnetic nanoparticles (MNPs) for hyperthermia, and discuss the limitations and advances in the synthesis of these particles. Based on this knowledge, new perspectives on development of new biocompatible and biofunctional nanomaterials for magnetic hyperthermia are discussed.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e96/5304434/6c7ecdaaf473/40204_2016_54_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e96/5304434/6625157f3c3e/40204_2016_54_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e96/5304434/3787041771cf/40204_2016_54_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e96/5304434/daba33e768b0/40204_2016_54_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e96/5304434/cfd11afd06d4/40204_2016_54_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e96/5304434/b308f026e39f/40204_2016_54_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e96/5304434/5eed8817f831/40204_2016_54_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e96/5304434/6c7ecdaaf473/40204_2016_54_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e96/5304434/6625157f3c3e/40204_2016_54_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e96/5304434/3787041771cf/40204_2016_54_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e96/5304434/daba33e768b0/40204_2016_54_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e96/5304434/cfd11afd06d4/40204_2016_54_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e96/5304434/b308f026e39f/40204_2016_54_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e96/5304434/5eed8817f831/40204_2016_54_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e96/5304434/6c7ecdaaf473/40204_2016_54_Fig7_HTML.jpg

相似文献

[1]
Recent progress on magnetic nanoparticles for magnetic hyperthermia.

Prog Biomater. 2016-12

[2]
Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.

Nanomaterials (Basel). 2020-12-26

[3]
Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia.

Nanomaterials (Basel). 2015-1-9

[4]
Fundamentals to Apply Magnetic Nanoparticles for Hyperthermia Therapy.

Nanomaterials (Basel). 2021-5-1

[5]
Synthesis and characterization of modified magnetic nanoparticles as theranostic agents: in vitro safety assessment in healthy cells.

Toxicol In Vitro. 2021-4

[6]
Multimodal Superparamagnetic Nanoparticles with Unusually Enhanced Specific Absorption Rate for Synergetic Cancer Therapeutics and Magnetic Resonance Imaging.

ACS Appl Mater Interfaces. 2016-6-1

[7]
Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles.

Mater Sci Eng C Mater Biol Appl. 2020-12

[8]
Recent insights in magnetic hyperthermia: From the "hot-spot" effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybrids.

Adv Drug Deliv Rev. 2018-11-7

[9]
Effective Cancer Theranostics with Polymer Encapsulated Superparamagnetic Nanoparticles: Combined Effects of Magnetic Hyperthermia and Controlled Drug Release.

ACS Biomater Sci Eng. 2017-7-10

[10]
In vitro investigation on the magnetic thermochemotherapy mediated by magnetic nanoparticles combined with methotrexate for breast cancer treatment.

J Nanosci Nanotechnol. 2013-2

引用本文的文献

[1]
Magnetic core-shell nanoparticles for Hyperthermia: A numerical study of soft and hard core-shell magnetic materials in liver tissue based on dual phase lag model.

Biochem Biophys Rep. 2025-6-27

[2]
Application of smart responsive nanomaterials in the theranostics of gastrointestinal malignancies: Current status and future perspectives.

Coord Chem Rev. 2025-7-15

[3]
Simulation-Based Design and Machine Learning Optimization of a Novel Liquid Cooling System for Radio Frequency Coils in Magnetic Hyperthermia.

Bioengineering (Basel). 2025-5-4

[4]
Iron oxide based magnetic nanoparticles for hyperthermia, MRI and drug delivery applications: a review.

RSC Adv. 2025-4-14

[5]
Effect of magnetic anisotropy and interaction on spatial focused hyperthermia for rotating and oscillating fields.

Heliyon. 2024-9-22

[6]
Size-dependent Curie temperature of Ni nanoparticles from spin-lattice dynamics simulations.

Sci Rep. 2024-9-24

[7]
Effect of particle size and composition on local magnetic hyperthermia of chitosan-Mg1-xCoxFe2O4 nanohybrid.

Front Chem. 2024-3-7

[8]
Advances in screening hyperthermic nanomedicines in 3D tumor models.

Nanoscale Horiz. 2024-2-26

[9]
Cobalt Ferrite Synthesized Using a Biogenic Sol-Gel Method for Biomedical Applications.

Molecules. 2023-11-23

[10]
Fe-Cr-Nb-B Magnetic Particles and Adipose-Derived Mesenchymal Cells Trigger Cancer Cell Apoptosis by Magneto-Mechanical Actuation.

Nanomaterials (Basel). 2023-11-14

本文引用的文献

[1]
Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications.

Sci Technol Adv Mater. 2015-4-28

[2]
Tuning the magnetic properties of nanoparticles.

Int J Mol Sci. 2013-7-31

[3]
Promising iron oxide-based magnetic nanoparticles in biomedical engineering.

Arch Pharm Res. 2012-12-21

[4]
The Vroman effect: competitive protein exchange with dynamic multilayer protein aggregates.

Colloids Surf B Biointerfaces. 2012-11-23

[5]
Iron oxide nanoparticles with sizes, shapes and compositions resulting in different magnetization signatures as potential labels for multiparametric detection.

Acta Biomater. 2012-12-1

[6]
Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages.

PLoS One. 2012-9-27

[7]
Ni doped Fe3O4 magnetic nanoparticles.

J Nanosci Nanotechnol. 2012-3

[8]
Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis.

Nano Lett. 2012-6-21

[9]
Effect of a SiO2 coating on the magnetic properties of Fe3O4 nanoparticles.

J Phys Condens Matter. 2012-7-4

[10]
Oxidative stress and dermal toxicity of iron oxide nanoparticles in vitro.

Cell Biochem Biophys. 2013-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索