Suppr超能文献

蛋白质中涉及硫原子的氢键的几何特征。

Geometric characteristics of hydrogen bonds involving sulfur atoms in proteins.

作者信息

Zhou Peng, Tian Feifei, Lv Fenglin, Shang Zhicai

机构信息

Department of Chemistry, Zhejiang University, Hangzhou, China.

出版信息

Proteins. 2009 Jul;76(1):151-63. doi: 10.1002/prot.22327.

Abstract

Sulfur atoms have been known to participate in hydrogen bonds (H-bonds) and these sulfur-containing H-bonds (SCHBs) are suggested to play important roles in certain biological processes. This study aims to comprehensively characterize all the SCHBs in 500 high-resolution protein structures (< or =1.8 A). We categorized SCHBs into six types according to donor/acceptor behaviors and used explicit hydrogen approach to distinguish SCHBs from those of nonhydrogen bonding interactions. It is revealed that sulfur atom is a very poor H-bond acceptor, but a moderately good H-bond donor. In alpha-helix, considerable SCHBs were found between the sulphydryl group of cysteine residue i and the carbonyl oxygen of residue i-4, and these SCHBs exert effects in stabilizing helices. Although for other SCHBs, they possess no specific secondary structural preference, their geometric characteristics in proteins and in free small compounds are significantly distinct, indicating the protein SCHBs are geometrically distorted. Interestingly, sulfur atom in the disulfide bond tends to form bifurcated H-bond whereas in cysteine-cysteine pairs prefer to form dual H-bond. These special H-bonds remarkably boost the interaction between H-bond donor and acceptor. By oxidation/reduction manner, the mutual transformation between the dual H-bonds and disulfide bonds for cysteine-cysteine pairs can accurately adjust the structural stability and biological function of proteins in different environments. Furthermore, few loose H-bonds were observed to form between the sulphydryl groups and aromatic rings, and in these cases the donor H is almost over against the rim rather than the center of the aromatic ring.

摘要

已知硫原子可参与氢键(H键),并且这些含硫氢键(SCHBs)被认为在某些生物过程中发挥重要作用。本研究旨在全面表征500个高分辨率蛋白质结构(≤1.8 Å)中的所有SCHBs。我们根据供体/受体行为将SCHBs分为六种类型,并采用显式氢方法将SCHBs与非氢键相互作用区分开来。结果表明,硫原子是一种非常弱的氢键受体,但却是一种中等强度的氢键供体。在α螺旋中,发现半胱氨酸残基i的巯基与残基i - 4的羰基氧之间存在相当数量的SCHBs,这些SCHBs在稳定螺旋方面发挥作用。尽管对于其他SCHBs,它们没有特定的二级结构偏好,但它们在蛋白质和游离小分子化合物中的几何特征明显不同,表明蛋白质中的SCHBs在几何上发生了扭曲。有趣的是,二硫键中的硫原子倾向于形成分叉氢键,而在半胱氨酸 - 半胱氨酸对中则倾向于形成双重氢键。这些特殊的氢键显著增强了氢键供体和受体之间的相互作用。通过氧化/还原方式,半胱氨酸 - 半胱氨酸对的双重氢键和二硫键之间的相互转化可以在不同环境中精确调节蛋白质的结构稳定性和生物学功能。此外,观察到在巯基和芳香环之间形成了少量松散的氢键,在这些情况下,供体氢几乎是对着芳香环的边缘而不是中心。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验