Suppr超能文献

基于直系同源物的蛋白质-蛋白质相互作用预测及其在种间相互作用中的应用。

Ortholog-based protein-protein interaction prediction and its application to inter-species interactions.

作者信息

Lee Sheng-An, Chan Cheng-hsiung, Tsai Chi-Hung, Lai Jin-Mei, Wang Feng-Sheng, Kao Cheng-Yan, Huang Chi-Ying F

机构信息

Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan.

出版信息

BMC Bioinformatics. 2008 Dec 12;9 Suppl 12(Suppl 12):S11. doi: 10.1186/1471-2105-9-S12-S11.

Abstract

BACKGROUND

The rapid growth of protein-protein interaction (PPI) data has led to the emergence of PPI network analysis. Despite advances in high-throughput techniques, the interactomes of several model organisms are still far from complete. Therefore, it is desirable to expand these interactomes with ortholog-based and other methods.

RESULTS

Orthologous pairs of 18 eukaryotic species were expanded and merged with experimental PPI datasets. The contributions of interologs from each species were evaluated. The expanded orthologous pairs enable the inference of interologs for various species. For example, more than 32,000 human interactions can be predicted. The same dataset has also been applied to the prediction of host-pathogen interactions. PPIs between P. falciparum calmodulin and several H. sapiens proteins are predicted, and these interactions may contribute to the maintenance of host cell Ca2+ concentration. Using comparisons with Bayesian and structure-based approaches, interactions between putative HSP40 homologs of P. falciparum and the H. sapiens TNF receptor associated factor family are revealed, suggesting a role for these interactions in the interference of the human immune response to P. falciparum.

CONCLUSION

The PPI datasets are available from POINT http://point.bioinformatics.tw/ and POINeT http://poinet.bioinformatics.tw/. Further development of methods to predict host-pathogen interactions should incorporate multiple approaches in order to improve sensitivity, and should facilitate the identification of targets for drug discovery and design.

摘要

背景

蛋白质-蛋白质相互作用(PPI)数据的快速增长促使了PPI网络分析的出现。尽管高通量技术取得了进展,但几种模式生物的相互作用组仍远未完整。因此,期望通过基于直系同源物和其他方法来扩展这些相互作用组。

结果

扩展了18种真核生物的直系同源对,并将其与实验性PPI数据集合并。评估了每个物种中种间同源物的贡献。扩展后的直系同源对能够推断各种物种的种间同源物。例如,可以预测超过32000个人类相互作用。同一数据集也已应用于宿主-病原体相互作用的预测。预测了恶性疟原虫钙调蛋白与几种人类蛋白质之间的PPI,这些相互作用可能有助于维持宿主细胞Ca2+浓度。通过与贝叶斯方法和基于结构的方法进行比较,揭示了恶性疟原虫假定的HSP40同源物与人类肿瘤坏死因子受体相关因子家族之间的相互作用,表明这些相互作用在干扰人类对恶性疟原虫的免疫反应中发挥作用。

结论

PPI数据集可从POINT http://point.bioinformatics.tw/ 和POINeT http://poinet.bioinformatics.tw/ 获得。预测宿主-病原体相互作用的方法的进一步发展应纳入多种方法以提高灵敏度,并应有助于确定药物发现和设计的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c085/2638151/182b6e3a2114/1471-2105-9-S12-S11-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验