Suppr超能文献

POINeT:用于子网络分析和枢纽节点优先级排序的蛋白质相互作用组

POINeT: protein interactome with sub-network analysis and hub prioritization.

作者信息

Lee Sheng-An, Chan Chen-Hsiung, Chen Tzu-Chi, Yang Chia-Ying, Huang Kuo-Chuan, Tsai Chi-Hung, Lai Jin-Mei, Wang Feng-Sheng, Kao Cheng-Yan, Huang Chi-Ying F

机构信息

Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, ROC.

出版信息

BMC Bioinformatics. 2009 Apr 21;10:114. doi: 10.1186/1471-2105-10-114.

Abstract

BACKGROUND

Protein-protein interactions (PPIs) are critical to every aspect of biological processes. Expansion of all PPIs from a set of given queries often results in a complex PPI network lacking spatiotemporal consideration. Moreover, the reliability of available PPI resources, which consist of low- and high-throughput data, for network construction remains a significant challenge. Even though a number of software tools are available to facilitate PPI network analysis, an integrated tool is crucial to alleviate the burden on querying across multiple web servers and software tools.

RESULTS

We have constructed an integrated web service, POINeT, to simplify the process of PPI searching, analysis, and visualization. POINeT merges PPI and tissue-specific expression data from multiple resources. The tissue-specific PPIs and the numbers of research papers supporting the PPIs can be filtered with user-adjustable threshold values and are dynamically updated in the viewer. The network constructed in POINeT can be readily analyzed with, for example, the built-in centrality calculation module and an integrated network viewer. Nodes in global networks can also be ranked and filtered using various network analysis formulas, i.e., centralities. To prioritize the sub-network, we developed a ranking filtered method (S3) to uncover potential novel mediators in the midbody network. Several examples are provided to illustrate the functionality of POINeT. The network constructed from four schizophrenia risk markers suggests that EXOC4 might be a novel marker for this disease. Finally, a liver-specific PPI network has been filtered with adult and fetal liver expression profiles.

CONCLUSION

The functionalities provided by POINeT are highly improved compared to previous version of POINT. POINeT enables the identification and ranking of potential novel genes involved in a sub-network. Combining with tissue-specific gene expression profiles, PPIs specific to selected tissues can be revealed. The straightforward interface of POINeT makes PPI search and analysis just a few clicks away. The modular design permits further functional enhancement without hampering the simplicity. POINeT is available at (http://poinet.bioinformatics.tw/).

摘要

背景

蛋白质-蛋白质相互作用(PPI)对生物过程的各个方面都至关重要。从一组给定查询中扩展所有PPI通常会导致一个缺乏时空考虑的复杂PPI网络。此外,由低通量和高通量数据组成的现有PPI资源用于网络构建的可靠性仍然是一个重大挑战。尽管有许多软件工具可用于促进PPI网络分析,但一个集成工具对于减轻跨多个网络服务器和软件工具进行查询的负担至关重要。

结果

我们构建了一个集成网络服务POINeT,以简化PPI搜索、分析和可视化的过程。POINeT合并了来自多个资源的PPI和组织特异性表达数据。组织特异性PPI以及支持这些PPI的研究论文数量可以使用用户可调整的阈值进行筛选,并在查看器中动态更新。在POINeT中构建的网络可以很容易地使用例如内置的中心性计算模块和集成网络查看器进行分析。全局网络中的节点也可以使用各种网络分析公式(即中心性)进行排名和筛选。为了对子网进行优先级排序,我们开发了一种排名过滤方法(S3),以发现中体网络中潜在的新型介质。提供了几个例子来说明POINeT的功能。由四个精神分裂症风险标志物构建的网络表明EXOC4可能是该疾病的一个新型标志物。最后,使用成人和胎儿肝脏表达谱对肝脏特异性PPI网络进行了筛选。

结论

与之前版本的POINT相比,POINeT提供的功能有了很大改进。POINeT能够识别和排名参与子网的潜在新基因。结合组织特异性基因表达谱,可以揭示所选组织特有的PPI。POINeT简单直观的界面使PPI搜索和分析只需点击几下即可完成。模块化设计允许进一步增强功能而不妨碍其简单性。POINeT可在(http://poinet.bioinformatics.tw/)获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验