文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

将生物属性语义注释半自动转换为PASBio注释。

Semi-automatic conversion of BioProp semantic annotation to PASBio annotation.

作者信息

Tsai Richard Tzong-Han, Dai Hong-Jie, Huang Chi-Hsin, Hsu Wen-Lian

机构信息

Department of Computer Science & Engineering, Yuan Ze University, Chung-Li, Taiwan, R.O.C.

出版信息

BMC Bioinformatics. 2008 Dec 12;9 Suppl 12(Suppl 12):S18. doi: 10.1186/1471-2105-9-S12-S18.


DOI:10.1186/1471-2105-9-S12-S18
PMID:19091017
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2638158/
Abstract

BACKGROUND: Semantic role labeling (SRL) is an important text analysis technique. In SRL, sentences are represented by one or more predicate-argument structures (PAS). Each PAS is composed of a predicate (verb) and several arguments (noun phrases, adverbial phrases, etc.) with different semantic roles, including main arguments (agent or patient) as well as adjunct arguments (time, manner, or location). PropBank is the most widely used PAS corpus and annotation format in the newswire domain. In the biomedical field, however, more detailed and restrictive PAS annotation formats such as PASBio are popular. Unfortunately, due to the lack of an annotated PASBio corpus, no publicly available machine-learning (ML) based SRL systems based on PASBio have been developed. In previous work, we constructed a biomedical corpus based on the PropBank standard called BioProp, on which we developed an ML-based SRL system, BIOSMILE. In this paper, we aim to build a system to convert BIOSMILE's BioProp annotation output to PASBio annotation. Our system consists of BIOSMILE in combination with a BioProp-PASBio rule-based converter, and an additional semi-automatic rule generator. RESULTS: Our first experiment evaluated our rule-based converter's performance independently from BIOSMILE performance. The converter achieved an F-score of 85.29%. The second experiment evaluated combined system (BIOSMILE + rule-based converter). The system achieved an F-score of 69.08% for PASBio's 29 verbs. CONCLUSION: Our approach allows PAS conversion between BioProp and PASBio annotation using BIOSMILE alongside our newly developed semi-automatic rule generator and rule-based converter. Our system can match the performance of other state-of-the-art domain-specific ML-based SRL systems and can be easily customized for PASBio application development.

摘要

背景:语义角色标注(SRL)是一种重要的文本分析技术。在SRL中,句子由一个或多个谓词-论元结构(PAS)表示。每个PAS由一个谓词(动词)和几个具有不同语义角色的论元(名词短语、状语短语等)组成,包括主要论元(施事或受事)以及附属论元(时间、方式或地点)。PropBank是新闻领域中使用最广泛的PAS语料库和标注格式。然而,在生物医学领域,更详细和严格的PAS标注格式(如PASBio)很受欢迎。不幸的是,由于缺乏带注释的PASBio语料库,尚未开发出基于PASBio的公开可用的基于机器学习(ML)的SRL系统。在之前的工作中,我们基于PropBank标准构建了一个名为BioProp的生物医学语料库,并在此基础上开发了一个基于ML的SRL系统BIOSMILE。在本文中,我们旨在构建一个系统,将BIOSMILE的BioProp标注输出转换为PASBio标注。我们的系统由BIOSMILE与一个基于BioProp-PASBio规则的转换器以及一个额外的半自动规则生成器组成。 结果:我们的第一个实验独立于BIOSMILE的性能评估了基于规则的转换器的性能。该转换器的F值为85.29%。第二个实验评估了组合系统(BIOSMILE + 基于规则的转换器)。对于PASBio的29个动词,该系统的F值为69.08%。 结论:我们的方法允许使用BIOSMILE以及新开发的半自动规则生成器和基于规则的转换器在BioProp和PASBio标注之间进行PAS转换。我们的系统可以与其他基于ML的最新领域特定SRL系统的性能相匹配,并且可以轻松定制以用于PASBio应用开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88b6/2638158/4f4fe26098ba/1471-2105-9-S12-S18-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88b6/2638158/99b41024fced/1471-2105-9-S12-S18-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88b6/2638158/f13f2735c183/1471-2105-9-S12-S18-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88b6/2638158/480fe5d491a0/1471-2105-9-S12-S18-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88b6/2638158/426d83bb0294/1471-2105-9-S12-S18-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88b6/2638158/5866ccfe7c32/1471-2105-9-S12-S18-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88b6/2638158/4f4fe26098ba/1471-2105-9-S12-S18-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88b6/2638158/99b41024fced/1471-2105-9-S12-S18-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88b6/2638158/f13f2735c183/1471-2105-9-S12-S18-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88b6/2638158/480fe5d491a0/1471-2105-9-S12-S18-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88b6/2638158/426d83bb0294/1471-2105-9-S12-S18-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88b6/2638158/5866ccfe7c32/1471-2105-9-S12-S18-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88b6/2638158/4f4fe26098ba/1471-2105-9-S12-S18-6.jpg

相似文献

[1]
Semi-automatic conversion of BioProp semantic annotation to PASBio annotation.

BMC Bioinformatics. 2008-12-12

[2]
BIOSMILE: a semantic role labeling system for biomedical verbs using a maximum-entropy model with automatically generated template features.

BMC Bioinformatics. 2007-9-1

[3]
A critical review of PASBio's argument structures for biomedical verbs.

BMC Bioinformatics. 2006-11-24

[4]
Domain adaptation for semantic role labeling of clinical text.

J Am Med Inform Assoc. 2015-9

[5]
Domain adaptation for semantic role labeling in the biomedical domain.

Bioinformatics. 2010-2-23

[6]
PASBio: predicate-argument structures for event extraction in molecular biology.

BMC Bioinformatics. 2004-10-19

[7]
A resource-saving collective approach to biomedical semantic role labeling.

BMC Bioinformatics. 2014-5-27

[8]
Semantic role labeling for protein transport predicates.

BMC Bioinformatics. 2008-6-11

[9]
Automatic identification and classification of noun argument structures in biomedical literature.

IEEE/ACM Trans Comput Biol Bioinform. 2012

[10]
Towards semantic role labeling & IE in the medical literature.

AMIA Annu Symp Proc. 2005

引用本文的文献

[1]
The extraction of complex relationships and their conversion to biological expression language (BEL) overview of the BioCreative VI (2017) BEL track.

Database (Oxford). 2019-1-1

[2]
BelSmile: a biomedical semantic role labeling approach for extracting biological expression language from text.

Database (Oxford). 2016-5-12

[3]
Emerging strengths in Asia Pacific bioinformatics.

BMC Bioinformatics. 2008-12-12

本文引用的文献

[1]
BIOSMILE web search: a web application for annotating biomedical entities and relations.

Nucleic Acids Res. 2008-7-1

[2]
BIOSMILE: a semantic role labeling system for biomedical verbs using a maximum-entropy model with automatically generated template features.

BMC Bioinformatics. 2007-9-1

[3]
NERBio: using selected word conjunctions, term normalization, and global patterns to improve biomedical named entity recognition.

BMC Bioinformatics. 2006-12-18

[4]
A critical review of PASBio's argument structures for biomedical verbs.

BMC Bioinformatics. 2006-11-24

[5]
Towards semantic role labeling & IE in the medical literature.

AMIA Annu Symp Proc. 2005

[6]
LSAT: learning about alternative transcripts in MEDLINE.

Bioinformatics. 2006-4-1

[7]
Extraction of transcript diversity from scientific literature.

PLoS Comput Biol. 2005-6

[8]
PASBio: predicate-argument structures for event extraction in molecular biology.

BMC Bioinformatics. 2004-10-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索