文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

迈向医学文献中的语义角色标注与信息抽取

Towards semantic role labeling & IE in the medical literature.

作者信息

Kogan Yacov, Collier Nigel, Pakhomov Serguei, Krauthammer Michael

机构信息

Center for Medical Informatics, Yale University School of Medicine, New Haven, CT, USA.

出版信息

AMIA Annu Symp Proc. 2005;2005:410-4.


DOI:
PMID:16779072
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC1560806/
Abstract

INTRODUCTION: In this work, we introduce the concept of semantic role labeling to the medical domain. We report first results of porting and adapting an existing resource, Propbank, to the medical field. Propbank is an adjunct to Penn Treebank that provides semantic annotation of predicates and the roles played by their arguments. The main aim of this work is the applicability of the Propbank frame files to predicates typically encountered in the medical literature. METHODS: We analyzed a target corpus of 610,100 abstracts, which was selected by searching for publication type "case reports". From this target corpus, we randomly selected 10,000 sample abstracts to estimate the predicate distribution, and matched the predicates from this sample to the predicates in Propbank. RESULTS: Of the 1998 unique verbs in our sample, 76% were represented in Propbank. This included the 40 most frequent verbs, which represented 49% of all predicate instances in our sample and which matched the Propbank usage in a study of representative sentences. We propose extensions to Propbank that handle medical predicates, which are not adequately covered by Propbank. CONCLUSION: We believe that semantic role labeling using Propbank is a valid approach to capture predicate relations in the medical literature.

摘要

引言:在本研究中,我们将语义角色标注的概念引入医学领域。我们报告了将现有资源Propbank移植并适配到医学领域的初步成果。Propbank是宾州树库的一个附属资源,它提供谓词及其论元所扮演角色的语义标注。这项工作的主要目标是使Propbank框架文件适用于医学文献中常见的谓词。 方法:我们分析了一个由610100篇摘要组成的目标语料库,这些摘要通过搜索“病例报告”的出版物类型来选取。从这个目标语料库中,我们随机抽取10000篇样本摘要来估计谓词分布,并将该样本中的谓词与Propbank中的谓词进行匹配。 结果:在我们样本中的1998个独特动词中,76%在Propbank中有对应。这包括40个最频繁出现的动词,它们占我们样本中所有谓词实例的49%,并且在一项代表性句子研究中与Propbank的用法相匹配。我们提议对Propbank进行扩展,以处理Propbank未充分涵盖的医学谓词。 结论:我们认为使用Propbank进行语义角色标注是一种有效的方法,可以捕捉医学文献中的谓词关系。

相似文献

[1]
Towards semantic role labeling & IE in the medical literature.

AMIA Annu Symp Proc. 2005

[2]
Towards comprehensive syntactic and semantic annotations of the clinical narrative.

J Am Med Inform Assoc. 2013-1-25

[3]
Shallow semantic parsing of randomized controlled trial reports.

AMIA Annu Symp Proc. 2006

[4]
A critical review of PASBio's argument structures for biomedical verbs.

BMC Bioinformatics. 2006-11-24

[5]
Semi-automatic conversion of BioProp semantic annotation to PASBio annotation.

BMC Bioinformatics. 2008-12-12

[6]
The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text.

J Biomed Inform. 2003-12

[7]
BIOSMILE: a semantic role labeling system for biomedical verbs using a maximum-entropy model with automatically generated template features.

BMC Bioinformatics. 2007-9-1

[8]
Using SemRep to label semantic relations extracted from clinical text.

AMIA Annu Symp Proc. 2012

[9]
Developing a corpus of clinical notes manually annotated for part-of-speech.

Int J Med Inform. 2006-6

[10]
Predicate argument structure frames for modeling information in operative notes.

Stud Health Technol Inform. 2013

引用本文的文献

[1]
Psychiatric symptom recognition without labeled data using distributional representations of phrases and on-line knowledge.

J Biomed Inform. 2017-6-15

[2]
Domain adaptation for semantic role labeling of clinical text.

J Am Med Inform Assoc. 2015-9

[3]
Automating case definitions using literature-based reasoning.

Appl Clin Inform. 2013-10-30

[4]
Construction of an annotated corpus to support biomedical information extraction.

BMC Bioinformatics. 2009-10-23

[5]
Large scale application of neural network based semantic role labeling for automated relation extraction from biomedical texts.

PLoS One. 2009-7-28

[6]
Semi-automatic conversion of BioProp semantic annotation to PASBio annotation.

BMC Bioinformatics. 2008-12-12

[7]
Nominalization and alternations in biomedical language.

PLoS One. 2008-9-9

[8]
Semantic role labeling for protein transport predicates.

BMC Bioinformatics. 2008-6-11

[9]
Corpus annotation for mining biomedical events from literature.

BMC Bioinformatics. 2008-1-8

[10]
BIOSMILE: a semantic role labeling system for biomedical verbs using a maximum-entropy model with automatically generated template features.

BMC Bioinformatics. 2007-9-1

本文引用的文献

[1]
PASBio: predicate-argument structures for event extraction in molecular biology.

BMC Bioinformatics. 2004-10-19

[2]
Really, is medical sublanguage that different? Experimental counter-evidence from tagging medical and newspaper corpora.

Stud Health Technol Inform. 2004

[3]
The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text.

J Biomed Inform. 2003-12

[4]
Two biomedical sublanguages: a description based on the theories of Zellig Harris.

J Biomed Inform. 2002-8

[5]
The sublanguage of cross-coverage.

Proc AMIA Symp. 2002

[6]
Exploring text mining from MEDLINE.

Proc AMIA Symp. 2002

[7]
MEDSYNDIKATE--a natural language system for the extraction of medical information from findings reports.

Int J Med Inform. 2002-12-4

[8]
A broad-coverage natural language processing system.

Proc AMIA Symp. 2000

[9]
Experience with a mixed semantic/syntactic parser.

Proc Annu Symp Comput Appl Med Care. 1995

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索