文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

生物医学领域的语义角色标注的领域自适应。

Domain adaptation for semantic role labeling in the biomedical domain.

机构信息

NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore.

出版信息

Bioinformatics. 2010 Apr 15;26(8):1098-104. doi: 10.1093/bioinformatics/btq075. Epub 2010 Feb 23.


DOI:10.1093/bioinformatics/btq075
PMID:20179074
Abstract

MOTIVATION: Semantic role labeling (SRL) is a natural language processing (NLP) task that extracts a shallow meaning representation from free text sentences. Several efforts to create SRL systems for the biomedical domain have been made during the last few years. However, state-of-the-art SRL relies on manually annotated training instances, which are rare and expensive to prepare. In this article, we address SRL for the biomedical domain as a domain adaptation problem to leverage existing SRL resources from the newswire domain. RESULTS: We evaluate the performance of three recently proposed domain adaptation algorithms for SRL. Our results show that by using domain adaptation, the cost of developing an SRL system for the biomedical domain can be reduced significantly. Using domain adaptation, our system can achieve 97% of the performance with as little as 60 annotated target domain abstracts. AVAILABILITY: Our BioKIT system that performs SRL in the biomedical domain as described in this article is implemented in Python and C and operates under the Linux operating system. BioKIT can be downloaded at http://nlp.comp.nus.edu.sg/software. The domain adaptation software is available for download at http://www.mysmu.edu/faculty/jingjiang/software/DALR.html. The BioProp corpus is available from the Linguistic Data Consortium http://www.ldc.upenn.edu.

摘要

动机:语义角色标注(SRL)是一种自然语言处理(NLP)任务,它从自由文本句子中提取出浅层的语义表示。在过去的几年中,已经有几项针对生物医学领域的 SRL 系统的创建工作。然而,最新的 SRL 依赖于手动标注的训练实例,这些实例很少且准备起来很昂贵。在本文中,我们将生物医学领域的 SRL 视为一种领域自适应问题,以利用来自新闻领域的现有 SRL 资源。

结果:我们评估了三种最近提出的用于 SRL 的领域自适应算法的性能。我们的结果表明,通过使用领域自适应,可以显著降低开发生物医学领域 SRL 系统的成本。通过使用领域自适应,我们的系统仅使用 60 个标注的目标域摘要就可以达到 97%的性能。

可用性:我们的 BioKIT 系统在生物医学领域执行 SRL,如本文所述,它是用 Python 和 C 实现的,并在 Linux 操作系统下运行。BioKIT 可以从以下网址下载:http://nlp.comp.nus.edu.sg/software。领域自适应软件可从以下网址下载:http://www.mysmu.edu/faculty/jingjiang/software/DALR.html。BioProp 语料库可从语言数据联盟获取,网址为:http://www.ldc.upenn.edu。

相似文献

[1]
Domain adaptation for semantic role labeling in the biomedical domain.

Bioinformatics. 2010-2-23

[2]
Domain adaptation for semantic role labeling of clinical text.

J Am Med Inform Assoc. 2015-9

[3]
BIOSMILE: a semantic role labeling system for biomedical verbs using a maximum-entropy model with automatically generated template features.

BMC Bioinformatics. 2007-9-1

[4]
The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text.

J Biomed Inform. 2003-12

[5]
Recognizing names in biomedical texts: a machine learning approach.

Bioinformatics. 2004-5-1

[6]
Automatic term list generation for entity tagging.

Bioinformatics. 2006-3-15

[7]
Developing a corpus of clinical notes manually annotated for part-of-speech.

Int J Med Inform. 2006-6

[8]
Gene symbol disambiguation using knowledge-based profiles.

Bioinformatics. 2007-4-15

[9]
Semi-automatic conversion of BioProp semantic annotation to PASBio annotation.

BMC Bioinformatics. 2008-12-12

[10]
A hybrid method for relation extraction from biomedical literature.

Int J Med Inform. 2006-6

引用本文的文献

[1]
A comparative study of pre-trained language models for named entity recognition in clinical trial eligibility criteria from multiple corpora.

BMC Med Inform Decis Mak. 2022-9-6

[2]
ProvCaRe: Characterizing scientific reproducibility of biomedical research studies using semantic provenance metadata.

Int J Med Inform. 2018-11-3

[3]
Adapting Word Embeddings from Multiple Domains to Symptom Recognition from Psychiatric Notes.

AMIA Jt Summits Transl Sci Proc. 2018-5-18

[4]
Leveraging existing corpora for de-identification of psychiatric notes using domain adaptation.

AMIA Annu Symp Proc. 2018-4-16

[5]
Ranking Medical Terms to Support Expansion of Lay Language Resources for Patient Comprehension of Electronic Health Record Notes: Adapted Distant Supervision Approach.

JMIR Med Inform. 2017-10-31

[6]
Coreference annotation and resolution in the Colorado Richly Annotated Full Text (CRAFT) corpus of biomedical journal articles.

BMC Bioinformatics. 2017-8-17

[7]
Knowledge-transfer learning for prediction of matrix metalloprotease substrate-cleavage sites.

Sci Rep. 2017-7-18

[8]
Semantic Role Labeling of Clinical Text: Comparing Syntactic Parsers and Features.

AMIA Annu Symp Proc. 2017-2-10

[9]
Extractive text summarization system to aid data extraction from full text in systematic review development.

J Biomed Inform. 2016-12

[10]
BelSmile: a biomedical semantic role labeling approach for extracting biological expression language from text.

Database (Oxford). 2016-5-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索