McConney Michael E, Schaber Clemens F, Julian Michael D, Eberhardt William C, Humphrey Joseph A C, Barth Friedrich G, Tsukruk Vladimir V
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
J R Soc Interface. 2009 Aug 6;6(37):681-94. doi: 10.1098/rsif.2008.0463. Epub 2008 Dec 16.
The micromechanical properties of spider air flow hair sensilla (trichobothria) were characterized with nanometre resolution using surface force spectroscopy (SFS) under conditions of different constant deflection angular velocities theta (rad s(-1)) for hairs 900-950 microm long prior to shortening for measurement purposes. In the range of angular velocities examined (4 x 10(-4) - 2.6 x 10(-1) rad s(-1)), the torque T (Nm) resisting hair motion and its time rate of change (Nm s(-1)) were found to vary with deflection velocity according to power functions. In this range of angular velocities, the motion of the hair is most accurately captured by a three-parameter solid model, which numerically describes the properties of the hair suspension. A fit of the three-parameter model (3p) to the experimental data yielded the two torsional restoring parameters, S(3p)=2.91 x 10(-11) Nm rad(-1) and =2.77 x 10(-11) Nm rad(-1) and the damping parameter R(3p)=1.46 x 10(-12) Nm s rad(-1). For angular velocities larger than 0.05 rad s(-1), which are common under natural conditions, a more accurate angular momentum equation was found to be given by a two-parameter Kelvin solid model. For this case, the multiple regression fit yielded S(2p)=4.89 x 10(-11) Nm rad(-1) and R(2p)=2.83 x 10(-14) Nm s rad(-1) for the model parameters. While the two-parameter model has been used extensively in earlier work primarily at high hair angular velocities, to correctly capture the motion of the hair at both low and high angular velocities it is necessary to employ the three-parameter model. It is suggested that the viscoelastic mechanical properties of the hair suspension work to promote the phasic response behaviour of the sensilla.
在测量前将长度为900 - 950微米的刚毛缩短,利用表面力光谱法(SFS)在不同恒定偏转角速度θ(弧度·秒⁻¹)条件下,以纳米分辨率表征了蜘蛛气流毛形感器(听毛)的微机械性能。在所研究的角速度范围(4×10⁻⁴ - 2.6×10⁻¹弧度·秒⁻¹)内,发现抵抗刚毛运动的扭矩T(牛·米)及其变化率(牛·米·秒⁻¹)根据幂函数随偏转速度而变化。在这个角速度范围内,刚毛的运动最准确地由一个三参数固体模型来描述,该模型以数值方式描述了刚毛悬置的特性。将三参数模型(3p)拟合到实验数据中,得到了两个扭转恢复参数,S(3p)=2.91×10⁻¹¹牛·米·弧度⁻¹和 =2.77×10⁻¹¹牛·米·弧度⁻¹,以及阻尼参数R(3p)=1.46×10⁻¹²牛·米·秒·弧度⁻¹。对于大于0.05弧度·秒⁻¹的角速度,这在自然条件下很常见,发现一个更准确的角动量方程由一个两参数开尔文固体模型给出。对于这种情况,多元回归拟合得到模型参数S(2p)=4.89×10⁻¹¹牛·米·弧度⁻¹和R(2p)=2.83×10⁻¹⁴牛·米·秒·弧度⁻¹。虽然两参数模型在早期工作中主要在高刚毛角速度下被广泛使用,但为了正确捕捉刚毛在低角速度和高角速度下的运动,有必要采用三参数模型。有人认为,刚毛悬置的粘弹性机械性能有助于促进感器的相位响应行为。