Suppr超能文献

液泡蛋白分选途径有助于马尔堡病毒的释放。

Vacuolar protein sorting pathway contributes to the release of Marburg virus.

作者信息

Kolesnikova Larissa, Strecker Thomas, Morita Eiji, Zielecki Florian, Mittler Eva, Crump Colin, Becker Stephan

机构信息

Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany.

出版信息

J Virol. 2009 Mar;83(5):2327-37. doi: 10.1128/JVI.02184-08. Epub 2008 Dec 17.

Abstract

VP40, the major matrix protein of Marburg virus, is the main driving force for viral budding. Additionally, cellular factors are likely to play an important role in the release of progeny virus. In the present study, we characterized the influence of the vacuolar protein sorting (VPS) pathway on the release of virus-like particles (VLPs), which are induced by Marburg virus VP40. In the supernatants of HEK 293 cells expressing VP40, different populations of VLPs with either a vesicular or a filamentous morphology were detected. While the filaments were almost completely composed of VP40, the vesicular particles additionally contained considerable amounts of cellular proteins. In contrast to that in the vesicles, the VP40 in the filaments was regularly organized, probably inducing the elimination of cellular proteins from the released VLPs. Vesicular particles were observed in the supernatants of cells even in the absence of VP40. Mutation of the late-domain motif in VP40 resulted in reduced release of filamentous particles, and likewise, inhibition of the VPS pathway by expression of a dominant-negative (DN) form of VPS4 inhibited the release of filamentous particles. In contrast, the release of vesicular particles did not respond significantly to the expression of DN VPS4. Like the budding of VLPs, the budding of Marburg virus particles was partially inhibited by the expression of DN VPS4. While the release of VLPs from VP40-expressing cells is a valuable tool with which to investigate the budding of Marburg virus particles, it is important to separate filamentous VLPs from vesicular particles, which contain many cellular proteins and use a different budding mechanism.

摘要

VP40是马尔堡病毒的主要基质蛋白,是病毒出芽的主要驱动力。此外,细胞因子可能在子代病毒的释放中起重要作用。在本研究中,我们表征了液泡蛋白分选(VPS)途径对由马尔堡病毒VP40诱导的病毒样颗粒(VLP)释放的影响。在表达VP40的HEK 293细胞的上清液中,检测到具有囊泡或丝状形态的不同群体的VLP。虽然丝状结构几乎完全由VP40组成,但囊泡颗粒还含有大量的细胞蛋白。与囊泡中的情况相反,丝状结构中的VP40排列规则,可能促使释放的VLP中细胞蛋白的消除。即使在没有VP40的情况下,也能在细胞上清液中观察到囊泡颗粒。VP40中晚期结构域基序的突变导致丝状颗粒的释放减少,同样,通过表达VPS4的显性负性(DN)形式抑制VPS途径也抑制了丝状颗粒的释放。相比之下,囊泡颗粒的释放对DN VPS4的表达没有明显反应。与VLP的出芽一样,马尔堡病毒颗粒的出芽也受到DN VPS4表达的部分抑制。虽然从表达VP40的细胞中释放VLP是研究马尔堡病毒颗粒出芽的一个有价值的工具,但重要的是要将丝状VLP与含有许多细胞蛋白并使用不同出芽机制的囊泡颗粒分开。

相似文献

1
Vacuolar protein sorting pathway contributes to the release of Marburg virus.
J Virol. 2009 Mar;83(5):2327-37. doi: 10.1128/JVI.02184-08. Epub 2008 Dec 17.
2
Marburg virus exploits the Rab11-mediated endocytic pathway in viral-particle production.
Microbiol Spectr. 2024 Sep 3;12(9):e0026924. doi: 10.1128/spectrum.00269-24. Epub 2024 Jul 30.
3
Tsg101 is recruited by a late domain of the nucleocapsid protein to support budding of Marburg virus-like particles.
J Virol. 2010 Aug;84(15):7847-56. doi: 10.1128/JVI.00476-10. Epub 2010 May 26.
4
Identification of amino acids in Marburg virus VP40 that are important for virus-like particle budding.
J Infect Dis. 2011 Nov;204 Suppl 3(Suppl 3):S871-7. doi: 10.1093/infdis/jir309.
6
Phosphorylation of Marburg virus matrix protein VP40 triggers assembly of nucleocapsids with the viral envelope at the plasma membrane.
Cell Microbiol. 2012 Feb;14(2):182-97. doi: 10.1111/j.1462-5822.2011.01709.x. Epub 2011 Nov 10.
8
Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress.
PLoS Pathog. 2017 Jan 11;13(1):e1006132. doi: 10.1371/journal.ppat.1006132. eCollection 2017 Jan.
10
Generation of Marburg virus-like particles by co-expression of glycoprotein and matrix protein.
FEMS Immunol Med Microbiol. 2004 Jan 15;40(1):27-31. doi: 10.1016/S0928-8244(03)00273-6.

引用本文的文献

1
Yaravirus brasiliense genomic structure analysis and its possible influence on the metabolism.
Genet Mol Biol. 2025 Feb 7;48(1):e20240139. doi: 10.1590/1678-4685-GMB-2024-0139. eCollection 2025.
2
A novel and diverse family of filamentous DNA viruses associated with parasitic wasps.
Virus Evol. 2024 Mar 2;10(1):veae022. doi: 10.1093/ve/veae022. eCollection 2024.
3
Orientia tsutsugamushi: A life between escapes.
Microbiologyopen. 2023 Oct;12(5):e1380. doi: 10.1002/mbo3.1380.
4
Identification and characterization of endosymbiosis-related immune genes in deep-sea mussels .
J Oceanol Limnol. 2020;38(4):1292-1303. doi: 10.1007/s00343-020-0040-7. Epub 2020 Jul 24.
5
Host and Viral Proteins Modulating Ebola and Marburg Virus Egress.
Viruses. 2019 Jan 3;11(1):25. doi: 10.3390/v11010025.
8
ALIX Rescues Budding of a Double PTAP/PPEY L-Domain Deletion Mutant of Ebola VP40: A Role for ALIX in Ebola Virus Egress.
J Infect Dis. 2015 Oct 1;212 Suppl 2(Suppl 2):S138-45. doi: 10.1093/infdis/jiu838. Epub 2015 Mar 18.
9
Interaction with Tsg101 is necessary for the efficient transport and release of nucleocapsids in marburg virus-infected cells.
PLoS Pathog. 2014 Oct 16;10(10):e1004463. doi: 10.1371/journal.ppat.1004463. eCollection 2014 Oct.
10
Conformational plasticity of the Ebola virus matrix protein.
Protein Sci. 2014 Nov;23(11):1519-27. doi: 10.1002/pro.2541. Epub 2014 Sep 4.

本文引用的文献

1
Protection against filovirus infection: virus-like particle vaccines.
Expert Rev Vaccines. 2008 Apr;7(3):333-44. doi: 10.1586/14760584.7.3.333.
2
Mechanisms for enveloped virus budding: can some viruses do without an ESCRT?
Virology. 2008 Mar 15;372(2):221-32. doi: 10.1016/j.virol.2007.11.008. Epub 2007 Dec 11.
3
Ubiquitin depletion and dominant-negative VPS4 inhibit rhabdovirus budding without affecting alphavirus budding.
J Virol. 2007 Dec;81(24):13631-9. doi: 10.1128/JVI.01688-07. Epub 2007 Oct 3.
4
The ESCRT machinery is not required for human cytomegalovirus envelopment.
Cell Microbiol. 2007 Dec;9(12):2955-67. doi: 10.1111/j.1462-5822.2007.01024.x. Epub 2007 Aug 29.
5
Herpes simplex virus type 1 cytoplasmic envelopment requires functional Vps4.
J Virol. 2007 Jul;81(14):7380-7. doi: 10.1128/JVI.00222-07. Epub 2007 May 16.
6
The emerging shape of the ESCRT machinery.
Nat Rev Mol Cell Biol. 2007 May;8(5):355-68. doi: 10.1038/nrm2162.
7
More than one door - Budding of enveloped viruses through cellular membranes.
FEBS Lett. 2007 May 22;581(11):2089-97. doi: 10.1016/j.febslet.2007.03.060. Epub 2007 Mar 30.
8
Evaluation of influenza virus-like particles and Novasome adjuvant as candidate vaccine for avian influenza.
Vaccine. 2007 May 22;25(21):4283-90. doi: 10.1016/j.vaccine.2007.02.059. Epub 2007 Mar 9.
10
Role of the transmembrane domain of marburg virus surface protein GP in assembly of the viral envelope.
J Virol. 2007 Apr;81(8):3942-8. doi: 10.1128/JVI.02263-06. Epub 2007 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验