Suppr超能文献

张量分布函数。

The tensor distribution function.

作者信息

Leow A D, Zhu S, Zhan L, McMahon K, de Zubicaray G I, Meredith M, Wright M J, Toga A W, Thompson P M

机构信息

Neuropsychiatric Hospital and LONI (Laboratory of NeuroImaging), University of California, Los Angeles, California 90095, USA.

出版信息

Magn Reson Med. 2009 Jan;61(1):205-14. doi: 10.1002/mrm.21852.

Abstract

Diffusion weighted magnetic resonance imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitized gradients along a minimum of six directions, second-order tensors (represented by three-by-three positive definite matrices) can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve more complicated white matter configurations, e.g., crossing fiber tracts. Recently, a number of high-angular resolution schemes with more than six gradient directions have been employed to address this issue. In this article, we introduce the tensor distribution function (TDF), a probability function defined on the space of symmetric positive definite matrices. Using the calculus of variations, we solve the TDF that optimally describes the observed data. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function. Moreover, a tensor orientation distribution function (TOD) may also be derived from the TDF, allowing for the estimation of principal fiber directions and their corresponding eigenvalues.

摘要

扩散加权磁共振成像是一种强大的工具,可通过检查脑组织中水分子的三维位移分布来研究白质微观结构。通过沿至少六个方向施加扩散敏感梯度,可以计算二阶张量(由三乘三正定矩阵表示)以模拟主要的扩散过程。然而,传统的扩散张量成像(DTI)不足以解析更复杂的白质结构,例如交叉纤维束。最近,一些具有六个以上梯度方向的高角分辨率方案已被用于解决这个问题。在本文中,我们介绍张量分布函数(TDF),它是在对称正定矩阵空间上定义的概率函数。使用变分法,我们求解能最佳描述观测数据的TDF。在这里,纤维交叉被建模为具有由TDF指定权重的高斯扩散过程的集合。一旦确定了这个最优TDF,通过对所得位移概率函数进行解析积分就可以轻松计算出方向分布函数(ODF)。此外,张量方向分布函数(TOD)也可以从TDF导出,从而可以估计主要纤维方向及其相应的特征值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5aa/2770429/bb3ffb1ed39f/nihms108588f1.jpg

相似文献

1
The tensor distribution function.张量分布函数。
Magn Reson Med. 2009 Jan;61(1):205-14. doi: 10.1002/mrm.21852.
5
DTI segmentation by statistical surface evolution.基于统计曲面演化的扩散张量成像分割
IEEE Trans Med Imaging. 2006 Jun;25(6):685-700. doi: 10.1109/tmi.2006.873299.
7
Generating fiber crossing phantoms out of experimental DWIs.从实验性扩散加权成像(DWI)生成纤维交叉体模。
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):169-76. doi: 10.1007/978-3-540-75757-3_21.

引用本文的文献

4
BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks.脑图基准:基于图神经网络的脑网络分析基准
IEEE Trans Med Imaging. 2023 Feb;42(2):493-506. doi: 10.1109/TMI.2022.3218745. Epub 2023 Feb 2.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验