Leow A D, Zhu S, Zhan L, McMahon K, de Zubicaray G I, Meredith M, Wright M J, Toga A W, Thompson P M
Neuropsychiatric Hospital and LONI (Laboratory of NeuroImaging), University of California, Los Angeles, California 90095, USA.
Magn Reson Med. 2009 Jan;61(1):205-14. doi: 10.1002/mrm.21852.
Diffusion weighted magnetic resonance imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitized gradients along a minimum of six directions, second-order tensors (represented by three-by-three positive definite matrices) can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve more complicated white matter configurations, e.g., crossing fiber tracts. Recently, a number of high-angular resolution schemes with more than six gradient directions have been employed to address this issue. In this article, we introduce the tensor distribution function (TDF), a probability function defined on the space of symmetric positive definite matrices. Using the calculus of variations, we solve the TDF that optimally describes the observed data. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function. Moreover, a tensor orientation distribution function (TOD) may also be derived from the TDF, allowing for the estimation of principal fiber directions and their corresponding eigenvalues.
扩散加权磁共振成像是一种强大的工具,可通过检查脑组织中水分子的三维位移分布来研究白质微观结构。通过沿至少六个方向施加扩散敏感梯度,可以计算二阶张量(由三乘三正定矩阵表示)以模拟主要的扩散过程。然而,传统的扩散张量成像(DTI)不足以解析更复杂的白质结构,例如交叉纤维束。最近,一些具有六个以上梯度方向的高角分辨率方案已被用于解决这个问题。在本文中,我们介绍张量分布函数(TDF),它是在对称正定矩阵空间上定义的概率函数。使用变分法,我们求解能最佳描述观测数据的TDF。在这里,纤维交叉被建模为具有由TDF指定权重的高斯扩散过程的集合。一旦确定了这个最优TDF,通过对所得位移概率函数进行解析积分就可以轻松计算出方向分布函数(ODF)。此外,张量方向分布函数(TOD)也可以从TDF导出,从而可以估计主要纤维方向及其相应的特征值。