Suppr超能文献

一种新的磁共振扩散张量分布框架。

A new framework for MR diffusion tensor distribution.

机构信息

Division on Translational Imaging and Genomic Integrity, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.

Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.

出版信息

Sci Rep. 2021 Feb 2;11(1):2766. doi: 10.1038/s41598-021-81264-x.

Abstract

The ability to characterize heterogeneous and anisotropic water diffusion processes within macroscopic MRI voxels non-invasively and in vivo is a desideratum in biology, neuroscience, and medicine. While an MRI voxel may contain approximately a microliter of tissue, our goal is to examine intravoxel diffusion processes on the order of picoliters. Here we propose a new theoretical framework and efficient experimental design to describe and measure such intravoxel structural heterogeneity and anisotropy. We assume that a constrained normal tensor-variate distribution (CNTVD) describes the variability of positive definite diffusion tensors within a voxel which extends its applicability to a wide range of b-values while preserving the richness of diffusion tensor distribution (DTD) paradigm unlike existing models. We introduce a new Monte Carlo (MC) scheme to synthesize realistic 6D DTD numerical phantoms and invert the MR signal. We show that the signal inversion is well-posed and estimate the CNTVD parameters parsimoniously by exploiting the different symmetries of the mean and covariance tensors of CNTVD. The robustness of the estimation pipeline is assessed by adding noise to calculated MR signals and compared with the ground truth. A family of invariant parameters and glyphs which characterize microscopic shape, size and orientation heterogeneity within a voxel are also presented.

摘要

在生物、神经科学和医学领域,能够非侵入性地在体内在宏观 MRI 体素中对异质各向同性的水分子扩散过程进行特征描述是一个理想目标。虽然一个 MRI 体素可能包含大约一微升的组织,但我们的目标是研究大约皮升级别的体素内扩散过程。在这里,我们提出了一种新的理论框架和有效的实验设计,用于描述和测量这种体素内结构异质性和各向异性。我们假设,约束正态张量变量分布 (Constrained Normal Tensor-Variate Distribution, CNTVD) 可以描述体素内正定扩散张量的可变性,这一假设扩展了其在广泛的 b 值范围内的适用性,同时保留了扩散张量分布 (Diffusion Tensor Distribution, DTD) 范式的丰富性,而不同于现有模型。我们引入了一种新的蒙特卡罗 (Monte Carlo, MC) 方案来合成现实的 6D DTD 数值体模并反转 MR 信号。我们表明,信号反转是有界的,并通过利用 CNTVD 的均值和协方差张量的不同对称性来合理地估计 CNTVD 参数。通过向计算出的 MR 信号添加噪声并与真实值进行比较,评估了估计管道的稳健性。我们还提出了一组不变参数和字形,用于描述体素内微观形状、大小和方向的异质性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f21/7854653/a40e57dc56aa/41598_2021_81264_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验