Roth Bradley J, Basser Peter J
Department of Physics, Oakland University, Rochester, Michigan 48309, USA.
Magn Reson Med. 2009 Jan;61(1):59-64. doi: 10.1002/mrm.21772.
Allen Song and coworkers recently proposed a method for MRI detection of biocurrents in nerves called "Lorentz effect imaging." When exposed to a magnetic field, neural currents are subjected to a Lorentz force that moves the nerve. If the displacement is large enough, an artifact is predicted in the MR signal. In this work, the displacement of a nerve of radius a in a surrounding tissue of radius b and shear modulus mu is analyzed. The nerve carries a current density J and lies in a magnetic field B. The solution to the resulting elasticity problem indicates that the nerve moves a distance BJ/4mu a2ln(b/a). Using realistic parameters for a human median nerve in a 4T field, this calculated displacement is 0.013 microm or less. The distribution of displacement is widespread throughout the tissue, and is not localized near the nerve. This displacement is orders of magnitude too small to be detected by conventional MRI methods.
艾伦·宋及其同事最近提出了一种用于磁共振成像(MRI)检测神经生物电流的方法,称为“洛伦兹效应成像”。当暴露于磁场中时,神经电流会受到洛伦兹力作用,从而使神经移动。如果位移足够大,预计磁共振信号中会出现伪影。在这项工作中,分析了半径为a的神经在半径为b且剪切模量为μ的周围组织中的位移。神经承载电流密度J并处于磁场B中。由此产生的弹性问题的解决方案表明,神经移动的距离为BJ / 4μa²ln(b / a)。对于在4T磁场中的人体正中神经使用实际参数,此计算出的位移为0.013微米或更小。位移分布在整个组织中广泛存在,而不是局限于神经附近。这种位移比传统MRI方法能够检测到的位移小几个数量级。