Mathupala Saroj P, Ko Young H, Pedersen Peter L
Department of Neurological Surgery and Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, United States.
Semin Cancer Biol. 2009 Feb;19(1):17-24. doi: 10.1016/j.semcancer.2008.11.006. Epub 2008 Dec 3.
The most common metabolic hallmark of malignant tumors, i.e., the "Warburg effect" is their propensity to metabolize glucose to lactic acid at a high rate even in the presence of oxygen. The pivotal player in this frequent cancer phenotype is mitochondrial-bound hexokinase [Bustamante E, Pedersen PL. High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci USA 1977;74(9):3735-9; Bustamante E, Morris HP, Pedersen PL. Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J Biol Chem 1981;256(16):8699-704]. Now, in clinics worldwide this prominent phenotype forms the basis of one of the most common detection systems for cancer, i.e., positron emission tomography (PET). Significantly, HK-2 is the major bound hexokinase isoform expressed in cancers that exhibit a "Warburg effect". This includes most cancers that metastasize and kill their human host. By stationing itself on the outer mitochondrial membrane, HK-2 also helps immortalize cancer cells, escapes product inhibition and gains preferential access to newly synthesized ATP for phosphorylating glucose. The latter event traps this essential nutrient inside the tumor cells as glucose-6-P, some of which is funneled off to serve as carbon precursors to help promote the production of new cancer cells while much is converted to lactic acid that exits the cells. The resultant acidity likely wards off an immune response while preparing surrounding tissues for invasion. With the re-emergence and acceptance of both the "Warburg effect" as a prominent phenotype of most clinical cancers, and "metabolic targeting" as a rational therapeutic strategy, a number of laboratories are focusing on metabolite entry or exit steps. One remarkable success story [Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, et al. Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 2004;324(1):269-75] is the use of the small molecule 3-bromopyruvate (3-BP) that selectively enters and destroys the cells of large tumors in animals by targeting both HK-2 and the mitochondrial ATP synthasome. This leads to very rapid ATP depletion and tumor destruction without harm to the animals. This review focuses on the multiple roles played by HK-2 in cancer and its potential as a metabolic target for complete cancer destruction.
恶性肿瘤最常见的代谢特征,即“瓦伯格效应”,是指即使在有氧的情况下,它们也倾向于将葡萄糖快速代谢为乳酸。这种常见癌症表型的关键参与者是线粒体结合型己糖激酶[布斯塔曼特E,佩德森PL。培养的大鼠肝癌细胞的高有氧糖酵解:线粒体己糖激酶的作用。美国国家科学院院刊1977;74(9):3735 - 9;布斯塔曼特E,莫里斯HP,佩德森PL。肿瘤细胞的能量代谢。对一种倾向于线粒体结合的己糖激酶形式的需求。生物化学杂志1981;256(16):8699 - 704]。如今,在全球范围内的临床中,这种显著的表型构成了最常见的癌症检测系统之一,即正电子发射断层扫描(PET)的基础。值得注意的是,HK - 2是在表现出“瓦伯格效应”的癌症中表达的主要结合型己糖激酶亚型。这包括大多数会转移并导致人类宿主死亡的癌症。通过定位于线粒体外膜,HK - 2还有助于使癌细胞永生化,逃避产物抑制,并优先获取新合成的ATP用于磷酸化葡萄糖。后一过程将这种必需营养素以葡萄糖 - 6 - 磷酸的形式捕获在肿瘤细胞内,其中一部分被分流用作碳前体以帮助促进新癌细胞的产生,而大部分则转化为乳酸并排出细胞。由此产生的酸性可能会抵御免疫反应,同时为周围组织的侵袭做好准备。随着“瓦伯格效应”作为大多数临床癌症的显著表型以及“代谢靶向”作为一种合理的治疗策略重新出现并被接受,许多实验室都在关注代谢物的进入或排出步骤。一个显著的成功案例[高YH,史密斯BL,王Y,庞珀MG,里尼DA,托尔本森MS等。晚期癌症:使用3 - 溴丙酮酸疗法耗尽ATP在所有病例中根除癌症。生物化学与生物物理研究通讯2004;324(1):269 - 75]是使用小分子3 - 溴丙酮酸(3 - BP),它通过靶向HK - 2和线粒体ATP合酶体,选择性地进入并破坏动物体内大肿瘤的细胞。这导致ATP迅速耗尽和肿瘤破坏,而不会对动物造成伤害。本综述重点关注HK - 2在癌症中所起的多种作用及其作为完全摧毁癌症的代谢靶点的潜力。