Suppr超能文献

氧化还原硫醇状态在人体红细胞中一氧化氮的动员和代谢中起核心作用。

Redox thiol status plays a central role in the mobilization and metabolism of nitric oxide in human red blood cells.

作者信息

Lopes de Almeida José Pedro, Carvalho Filomena Almeida, Silva-Herdade Ana Santos, Santos-Freitas Teresa, Saldanha Carlota

机构信息

Santa Maria Hospital, University of Lisbon Medical School, Portugal.

出版信息

Cell Biol Int. 2009 Mar;33(3):268-75. doi: 10.1016/j.cellbi.2008.11.012. Epub 2008 Dec 11.

Abstract

We assessed the redox thiol status influence on nitric oxide (NO) metabolism and efflux in erythrocytes stimulated with acetylcholinesterase substrate (acetylcholine, ACh) and inhibitor (velnacrine maleate, VM). Erythrocyte suspensions from healthy donors were incubated with increasing concentrations of dithiothreitol (1-50microM), in the presence and absence of acetylcholine/velnacrine (10microM). Levels of NO, nitrite/nitrate, S-nitrosohemoglobin, peroxynitrite and S-nitrosoglutathione were determined by spectrofluorimetric and spectrophotometric methods. Dithiothreitol significantly mobilized NO toward nitrite/nitrate and S-nitrosoglutathione, and decreased the amount of NO efflux. Both ACh/VM induce changes on the levels of erythrocyte nitrite/nitrate dependent on the DTT concentration. Higher levels of peroxynitrite and S-nitrosoglutathione were seen with velnacrine in presence of DTT 1 and 50microM. We concluded that dithiothreitol-induced activation of erythrocyte thiol status decreases NO efflux and allows greater intracellular NO mobilization onto different derivative molecules, both in the absence and presence of acetylcholinesterase substrate and inhibitor.

摘要

我们评估了氧化还原硫醇状态对用乙酰胆碱酯酶底物(乙酰胆碱,ACh)和抑制剂(马来酸维那克林,VM)刺激的红细胞中一氧化氮(NO)代谢和流出的影响。将健康供体的红细胞悬液在存在和不存在乙酰胆碱/维那克林(10μM)的情况下,与浓度不断增加的二硫苏糖醇(1-50μM)一起孵育。通过荧光分光光度法和分光光度法测定NO、亚硝酸盐/硝酸盐、S-亚硝基血红蛋白、过氧亚硝酸盐和S-亚硝基谷胱甘肽的水平。二硫苏糖醇显著地将NO转移至亚硝酸盐/硝酸盐和S-亚硝基谷胱甘肽,并减少了NO流出量。ACh/VM两者均会根据二硫苏糖醇浓度诱导红细胞亚硝酸盐/硝酸盐水平发生变化。在存在1μM和50μM二硫苏糖醇的情况下,维那克林会使过氧亚硝酸盐和S-亚硝基谷胱甘肽水平升高。我们得出结论,二硫苏糖醇诱导的红细胞硫醇状态激活会减少NO流出,并在不存在和存在乙酰胆碱酯酶底物及抑制剂的情况下,使更多的细胞内NO转移至不同的衍生分子上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验