Suppr超能文献

脑干与外周呼吸化学感受器之间的负性相互作用调节外周化学反射的幅度。

A negative interaction between brainstem and peripheral respiratory chemoreceptors modulates peripheral chemoreflex magnitude.

作者信息

Day Trevor A, Wilson Richard J A

机构信息

Department of Chemical and Biological Sciences, Mount Royal College, Calgary, Alberta, Canada.

出版信息

J Physiol. 2009 Feb 15;587(Pt 4):883-96. doi: 10.1113/jphysiol.2008.160689. Epub 2008 Dec 22.

Abstract

Interaction between central (brainstem) and peripheral (carotid body) respiratory chemosensitivity is vital to protect blood gases against potentially deleterious fluctuations, especially during sleep. Previously, using an in situ arterially perfused, vagotomized, decerebrate preparation in which brainstem and peripheral chemoreceptors are perfused separately (i.e. dual perfused preparation; DPP), we observed that the phrenic response to specific carotid body hypoxia was larger when the brainstem was held at 25 Torr P(CO(2)) compared to 50 Torr P(CO(2)). This suggests a negative (i.e. hypo-additive) interaction between chemoreceptors. The current study was designed to (a) determine whether this observation could be generalized to all carotid body stimuli, and (b) exclude the possibility that the hypo-additive response was the simple consequence of ventilatory saturation at high brainstem P(CO(2)). Specifically, we tested how steady-state brainstem P(CO(2)) modulates peripheral chemoreflex magnitude in response to carotid body P(CO(2)) and P(O(2)) perturbations, both above and below eupnoeic levels. We found that the peripheral chemoreflex was more responsive the lower the brainstem P(CO(2)) regardless of whether the peripheral chemoreceptors received stimuli which increased or decreased activation. These findings demonstrate a negative interaction between brainstem and peripheral chemosensitivity in the rat in the absence of ventilatory saturation. We suggest that a negative interaction in humans may contribute to increased controller gain associated with sleep-related breathing disorders and propose that the assumption of simple addition between chemoreceptor inputs used in current models of the respiratory control system be reconsidered.

摘要

中枢(脑干)与外周(颈动脉体)呼吸化学敏感性之间的相互作用对于保护血气免受潜在有害波动的影响至关重要,尤其是在睡眠期间。此前,我们使用一种原位动脉灌注、迷走神经切断、去大脑的制备方法,其中脑干和外周化学感受器分别灌注(即双灌注制备;DPP),我们观察到,与脑干维持在50 Torr P(CO₂)相比,当脑干维持在25 Torr P(CO₂)时,膈神经对特定颈动脉体缺氧的反应更大。这表明化学感受器之间存在负性(即低加性)相互作用。本研究旨在:(a)确定这一观察结果是否可推广到所有颈动脉体刺激;(b)排除低加性反应是高脑干P(CO₂)时通气饱和的简单结果的可能性。具体而言,我们测试了稳态脑干P(CO₂)如何调节外周化学反射幅度,以应对高于和低于平静呼吸水平的颈动脉体P(CO₂)和P(O₂)扰动。我们发现,无论外周化学感受器接收到的刺激是增加还是减少激活,脑干P(CO₂)越低,外周化学反射的反应性越高。这些发现证明了在没有通气饱和的情况下,大鼠脑干与外周化学敏感性之间存在负性相互作用。我们认为,人类中的负性相互作用可能导致与睡眠相关呼吸障碍相关的控制器增益增加,并建议重新考虑当前呼吸控制系统模型中使用的化学感受器输入简单相加的假设。

相似文献

1
A negative interaction between brainstem and peripheral respiratory chemoreceptors modulates peripheral chemoreflex magnitude.
J Physiol. 2009 Feb 15;587(Pt 4):883-96. doi: 10.1113/jphysiol.2008.160689. Epub 2008 Dec 22.
2
Brainstem PCO2 modulates phrenic responses to specific carotid body hypoxia in an in situ dual perfused rat preparation.
J Physiol. 2007 Feb 1;578(Pt 3):843-57. doi: 10.1113/jphysiol.2006.119594. Epub 2006 Nov 2.
5
Response time and sensitivity of the ventilatory response to CO2 in unanesthetized intact dogs: central vs. peripheral chemoreceptors.
J Appl Physiol (1985). 2006 Jan;100(1):13-9. doi: 10.1152/japplphysiol.00926.2005. Epub 2005 Sep 15.
7
Specific carotid body chemostimulation is sufficient to elicit phrenic poststimulus frequency decline in a novel in situ dual-perfused rat preparation.
Am J Physiol Regul Integr Comp Physiol. 2005 Aug;289(2):R532-R544. doi: 10.1152/ajpregu.00812.2004. Epub 2005 Mar 31.
8
Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO(2).
J Physiol. 2010 Jul 1;588(Pt 13):2455-71. doi: 10.1113/jphysiol.2010.187211. Epub 2010 Apr 26.
9
Assessing central and peripheral respiratory chemoreceptor interaction in humans.
Exp Physiol. 2022 Sep;107(9):1081-1093. doi: 10.1113/EP089983. Epub 2022 Aug 9.

引用本文的文献

1
Diverse perspectives on respiratory chemoreceptor interactions: Resuscitating an expired debate.
Exp Physiol. 2025 Sep;110(9):1194-1196. doi: 10.1113/EP091689. Epub 2025 Mar 31.
2
Central respiratory chemoreception.
Handb Clin Neurol. 2022;188:37-72. doi: 10.1016/B978-0-323-91534-2.00007-2.
3
Sex differences in the sympathetic neurocirculatory responses to chemoreflex activation.
J Physiol. 2022 Jun;600(11):2669-2689. doi: 10.1113/JP282327. Epub 2022 May 12.
5
Advancing respiratory-cardiovascular physiology with the working heart-brainstem preparation over 25 years.
J Physiol. 2022 May;600(9):2049-2075. doi: 10.1113/JP281953. Epub 2022 Apr 7.
6
Duration at high altitude influences the onset of arrhythmogenesis during apnea.
Eur J Appl Physiol. 2022 Feb;122(2):475-487. doi: 10.1007/s00421-021-04842-x. Epub 2021 Nov 20.
7
Baseline Arterial CO Pressure Regulates Acute Intermittent Hypoxia-Induced Phrenic Long-Term Facilitation in Rats.
Front Physiol. 2021 Feb 24;12:573385. doi: 10.3389/fphys.2021.573385. eCollection 2021.
8
Measuring Peripheral Chemoreflex Hypersensitivity in Heart Failure.
Front Physiol. 2020 Dec 29;11:595486. doi: 10.3389/fphys.2020.595486. eCollection 2020.
9
Neurokinin-1 receptor activation is sufficient to restore the hypercapnic ventilatory response in the Substance P-deficient naked mole-rat.
Am J Physiol Regul Integr Comp Physiol. 2020 Apr 1;318(4):R712-R721. doi: 10.1152/ajpregu.00251.2019. Epub 2020 Jan 22.
10
Ventilatory responses to acute hypoxia and hypercapnia in humans with a patent foramen ovale.
J Appl Physiol (1985). 2019 Mar 1;126(3):730-738. doi: 10.1152/japplphysiol.00741.2018. Epub 2018 Dec 6.

本文引用的文献

1
Lateral parabrachial nucleus mediates shortening of expiration during hypoxia.
Respir Physiol Neurobiol. 2009 Jan 1;165(1):1-8. doi: 10.1016/j.resp.2008.10.007. Epub 2008 Oct 17.
2
The 2008 Carl Ludwig Lecture: retrotrapezoid nucleus, CO2 homeostasis, and breathing automaticity.
J Appl Physiol (1985). 2008 Aug;105(2):404-16. doi: 10.1152/japplphysiol.90452.2008. Epub 2008 Jun 5.
4
Brainstem PCO2 modulates phrenic responses to specific carotid body hypoxia in an in situ dual perfused rat preparation.
J Physiol. 2007 Feb 1;578(Pt 3):843-57. doi: 10.1113/jphysiol.2006.119594. Epub 2006 Nov 2.
5
Peripheral chemoreceptor inputs to retrotrapezoid nucleus (RTN) CO2-sensitive neurons in rats.
J Physiol. 2006 Apr 15;572(Pt 2):503-23. doi: 10.1113/jphysiol.2005.103788. Epub 2006 Feb 2.
6
Reduced suppression of CO2-induced ventilatory stimulation by endomorphins relative to morphine.
Brain Res. 2005 Oct 19;1059(2):159-66. doi: 10.1016/j.brainres.2005.08.020. Epub 2005 Oct 11.
7
Response time and sensitivity of the ventilatory response to CO2 in unanesthetized intact dogs: central vs. peripheral chemoreceptors.
J Appl Physiol (1985). 2006 Jan;100(1):13-9. doi: 10.1152/japplphysiol.00926.2005. Epub 2005 Sep 15.
8
Oxygen sensing in the body.
Prog Biophys Mol Biol. 2006 Jul;91(3):249-86. doi: 10.1016/j.pbiomolbio.2005.07.001. Epub 2005 Aug 15.
9
Specific carotid body chemostimulation is sufficient to elicit phrenic poststimulus frequency decline in a novel in situ dual-perfused rat preparation.
Am J Physiol Regul Integr Comp Physiol. 2005 Aug;289(2):R532-R544. doi: 10.1152/ajpregu.00812.2004. Epub 2005 Mar 31.
10
Respiratory control by ventral surface chemoreceptor neurons in rats.
Nat Neurosci. 2004 Dec;7(12):1360-9. doi: 10.1038/nn1357. Epub 2004 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验