Kurabe Nobuya, Arai Satoko, Nishijima Akemi, Kubota Naoto, Suizu Futoshi, Mori Mayumi, Kurokawa Jun, Kondo-Miyazaki Miki, Ide Tomohiro, Murakami Kouji, Miyake Katsuhisa, Ueki Kohjiro, Koga Hisashi, Yatomi Yutaka, Tashiro Fumio, Noguchi Masayuki, Kadowaki Takashi, Miyazaki Toru
Division of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo, Japan.
J Biol Chem. 2009 Feb 20;284(8):5050-5. doi: 10.1074/jbc.M808598200. Epub 2008 Dec 22.
Cell cycle regulation and biochemical responses upon nutrients and growth factors are the major regulatory mechanisms for cell sizing in mammals. Recently, we identified that the death effector domain-containing DEDD impedes mitotic progression by inhibiting Cdk1 (cyclin-dependent kinase 1) and thus maintains an increase of cell size during the mitotic phase. Here we found that DEDD also associates with S6 kinase 1 (S6K1), downstream of phosphatidylinositol 3-kinase, and supports its activity by preventing inhibitory phosphorylation of S6K1 brought about by Cdk1 during the mitotic phase. DEDD(-/-) cells showed reduced S6K1 activity, consistently demonstrating decreased levels in activating phosphorylation at the Thr-389 site. In addition, levels of Cdk1-dependent inhibitory phosphorylation at the C terminus of S6K1 were enhanced in DEDD(-/-) cells and tissues. Consequently, as in S6K1(-/-) mice, the insulin mass within pancreatic islets was reduced in DEDD(-/-) mice, resulting in glucose intolerance. These findings suggest a novel cell sizing mechanism achieved by DEDD through the maintenance of S6K1 activity prior to cell division. Our results also suggest that DEDD may harbor important roles in glucose homeostasis and that its deficiency might be involved in the pathogenesis of type 2 diabetes mellitus.
细胞周期调控以及营养物质和生长因子作用下的生化反应是哺乳动物细胞大小调控的主要机制。最近,我们发现含死亡效应结构域的DEDD通过抑制细胞周期蛋白依赖性激酶1(Cdk1)来阻碍有丝分裂进程,从而在有丝分裂期维持细胞大小的增加。在此我们发现,DEDD还与磷脂酰肌醇3激酶下游的S6激酶1(S6K1)相关联,并通过在有丝分裂期阻止Cdk1导致的S6K1抑制性磷酸化来支持其活性。DEDD基因敲除(-/-)细胞显示S6K1活性降低,始终表明苏氨酸-389位点的激活磷酸化水平下降。此外,在DEDD基因敲除(-/-)细胞和组织中,S6K1 C末端的Cdk1依赖性抑制性磷酸化水平增强。因此,与S6K1基因敲除(-/-)小鼠一样,DEDD基因敲除(-/-)小鼠胰岛内胰岛素含量减少,导致葡萄糖不耐受。这些发现提示了一种由DEDD在细胞分裂前通过维持S6K1活性实现的新型细胞大小调控机制。我们的结果还表明,DEDD可能在葡萄糖稳态中发挥重要作用,其缺乏可能与2型糖尿病的发病机制有关。