Chen Xiaojie, Fu Feng, Wang Long
State Key Laboratory for Turbulence and Complex Systems, Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, China.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Nov;78(5 Pt 1):051120. doi: 10.1103/PhysRevE.78.051120. Epub 2008 Nov 24.
Previous studies mostly assume deterministic interactions among neighboring individuals for games on graphs. In this paper, we relax this assumption by introducing stochastic interactions into the spatial Prisoner's dilemma game, and study the effects of interaction stochasticity on the evolution of cooperation. Interestingly, simulation results show that there exists an optimal region of the intensity of interaction resulting in a maximum cooperation level. Moreover, we find good agreement between simulation results and theoretical predictions obtained from an extended pair-approximation method. We also show some typical snapshots of the system and investigate the mean payoffs for cooperators and defectors. Our results may provide some insight into understanding the emergence of cooperation in the real world where the interactions between individuals take place in an intermittent manner.
先前的研究大多假设图上博弈中相邻个体之间存在确定性相互作用。在本文中,我们通过将随机相互作用引入空间囚徒困境博弈来放宽这一假设,并研究相互作用随机性对合作演化的影响。有趣的是,模拟结果表明存在一个相互作用强度的最优区域,可导致最大合作水平。此外,我们发现模拟结果与通过扩展对近似方法获得的理论预测之间有很好的一致性。我们还展示了系统的一些典型快照,并研究了合作者和背叛者的平均收益。我们的结果可能为理解现实世界中个体之间以间歇方式进行相互作用时合作的出现提供一些见解。