Suppr超能文献

氢化酶在鼠伤寒沙门氏菌厌氧产生氢气的循环利用中的作用。

Role of the Hya hydrogenase in recycling of anaerobically produced H2 in Salmonella enterica serovar Typhimurium.

作者信息

Zbell Andrea L, Maier Robert J

机构信息

Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA.

出版信息

Appl Environ Microbiol. 2009 Mar;75(5):1456-9. doi: 10.1128/AEM.02064-08. Epub 2008 Dec 29.

Abstract

Double and triple uptake-type hydrogenase mutants were used to determine which hydrogenase recycles fermentatively produced hydrogen. The Deltahyb Deltahya and Deltahyd Deltahya double mutants evolved H(2) at rates similar to that of the triple mutant strain, so Hya alone oxidizes the bulk of H(2) produced during fermentation. When only Hya was present, no hydrogen production was observed in nutrient-limited medium. H(2) uptake assays showed that Hya can oxidize both exogenously added H(2) and formate hydrogen lyase-evolved H(2) anaerobically. Even after anaerobic growth, all three uptake-type hydrogenases could function in the presence of oxygen, including using O(2) as a terminal acceptor.

摘要

利用双摄取型和三摄取型氢化酶突变体来确定哪种氢化酶可循环利用发酵产生的氢气。ΔhybΔhya和ΔhydΔhya双突变体产生氢气的速率与三突变体菌株相似,因此仅Hya就能氧化发酵过程中产生的大部分氢气。当仅存在Hya时,在营养受限的培养基中未观察到氢气产生。氢气摄取试验表明,Hya能够厌氧氧化外源添加的氢气以及甲酸氢裂解酶产生的氢气。即使在厌氧生长后,所有三种摄取型氢化酶在有氧条件下仍可发挥作用,包括将氧气用作末端受体。

相似文献

1
Role of the Hya hydrogenase in recycling of anaerobically produced H2 in Salmonella enterica serovar Typhimurium.
Appl Environ Microbiol. 2009 Mar;75(5):1456-9. doi: 10.1128/AEM.02064-08. Epub 2008 Dec 29.
2
Differential expression of NiFe uptake-type hydrogenase genes in Salmonella enterica serovar Typhimurium.
Microbiology (Reading). 2007 Oct;153(Pt 10):3508-3516. doi: 10.1099/mic.0.2007/009027-0.
3
Respiratory hydrogen use by Salmonella enterica serovar Typhimurium is essential for virulence.
Infect Immun. 2004 Nov;72(11):6294-9. doi: 10.1128/IAI.72.11.6294-6299.2004.
6
Roles of H2 uptake hydrogenases in Shigella flexneri acid tolerance.
Microbiology (Reading). 2012 Aug;158(Pt 8):2204-2212. doi: 10.1099/mic.0.058248-0. Epub 2012 May 24.
7
8
How Salmonella oxidises H(2) under aerobic conditions.
FEBS Lett. 2012 Mar 9;586(5):536-44. doi: 10.1016/j.febslet.2011.07.044. Epub 2011 Aug 5.
9
Salmonella enterica serovar Typhimurium NiFe uptake-type hydrogenases are differentially expressed in vivo.
Infect Immun. 2008 Oct;76(10):4445-54. doi: 10.1128/IAI.00741-08. Epub 2008 Jul 14.

引用本文的文献

1
Globally distributed marine Gemmatimonadota have unique genomic potentials.
Microbiome. 2024 Aug 10;12(1):149. doi: 10.1186/s40168-024-01871-4.
3
Disentangling hindgut metabolism in the American cockroach through single-cell genomics and metatranscriptomics.
Front Microbiol. 2023 May 30;14:1156809. doi: 10.3389/fmicb.2023.1156809. eCollection 2023.
4
Molecular Hydrogen Metabolism: a Widespread Trait of Pathogenic Bacteria and Protists.
Microbiol Mol Biol Rev. 2020 Jan 29;84(1). doi: 10.1128/MMBR.00092-19. Print 2020 Feb 19.
5
Microbiota stability in healthy individuals after single-dose lactulose challenge-A randomized controlled study.
PLoS One. 2018 Oct 25;13(10):e0206214. doi: 10.1371/journal.pone.0206214. eCollection 2018.
7
Dissecting the Acid Stress Response of CIAT 899.
Front Microbiol. 2018 Apr 30;9:846. doi: 10.3389/fmicb.2018.00846. eCollection 2018.
8
Multi-time series RNA-seq analysis of Enterobacter lignolyticus SCF1 during growth in lignin-amended medium.
PLoS One. 2017 Oct 19;12(10):e0186440. doi: 10.1371/journal.pone.0186440. eCollection 2017.
9
Preliminary Transcriptome Analysis of Mature Biofilm and Planktonic Cells of Enteritidis Exposure to Acid Stress.
Front Microbiol. 2017 Sep 26;8:1861. doi: 10.3389/fmicb.2017.01861. eCollection 2017.
10
Anaerobic Formate and Hydrogen Metabolism.
EcoSal Plus. 2016 Oct;7(1). doi: 10.1128/ecosalplus.ESP-0011-2016.

本文引用的文献

1
Salmonella enterica serovar Typhimurium NiFe uptake-type hydrogenases are differentially expressed in vivo.
Infect Immun. 2008 Oct;76(10):4445-54. doi: 10.1128/IAI.00741-08. Epub 2008 Jul 14.
2
Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production.
FEMS Microbiol Lett. 2008 Jan;278(1):48-55. doi: 10.1111/j.1574-6968.2007.00966.x. Epub 2007 Nov 6.
3
Differential expression of NiFe uptake-type hydrogenase genes in Salmonella enterica serovar Typhimurium.
Microbiology (Reading). 2007 Oct;153(Pt 10):3508-3516. doi: 10.1099/mic.0.2007/009027-0.
4
Investigating and exploiting the electrocatalytic properties of hydrogenases.
Chem Rev. 2007 Oct;107(10):4366-413. doi: 10.1021/cr050191u. Epub 2007 Sep 11.
5
High photobiological hydrogen production activity of a Nostoc sp. PCC 7422 uptake hydrogenase-deficient mutant with high nitrogenase activity.
Mar Biotechnol (NY). 2007 Jan-Feb;9(1):101-12. doi: 10.1007/s10126-006-6035-3. Epub 2006 Nov 28.
6
Inactivation of the Escherichia coli K-12 twin-arginine translocation system promotes increased hydrogen production.
FEMS Microbiol Lett. 2006 Sep;262(2):135-7. doi: 10.1111/j.1574-6968.2006.00333.x.
7
Formate and its role in hydrogen production in Escherichia coli.
Biochem Soc Trans. 2005 Feb;33(Pt 1):42-6. doi: 10.1042/BST0330042.
9
Respiratory hydrogen use by Salmonella enterica serovar Typhimurium is essential for virulence.
Infect Immun. 2004 Nov;72(11):6294-9. doi: 10.1128/IAI.72.11.6294-6299.2004.
10
Molecular biology of microbial hydrogenases.
Curr Issues Mol Biol. 2004 Jul;6(2):159-88.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验