Suppr超能文献

使用双定量构效关系方法对皮肤渗透性进行计算机模拟预测。

In Silico Prediction of Skin Permeability Using a Two-QSAR Approach.

作者信息

Wu Yu-Wen, Ta Giang Huong, Lung Yi-Chieh, Weng Ching-Feng, Leong Max K

机构信息

Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan.

Institute of Respiratory Disease and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China.

出版信息

Pharmaceutics. 2022 Apr 28;14(5):961. doi: 10.3390/pharmaceutics14050961.

Abstract

Topical and transdermal drug delivery is an effective, safe, and preferred route of drug administration. As such, skin permeability is one of the critical parameters that should be taken into consideration in the process of drug discovery and development. The ex vivo human skin model is considered as the best surrogate to evaluate in vivo skin permeability. This investigation adopted a novel two-QSAR scheme by collectively incorporating machine learning-based hierarchical support vector regression (HSVR) and classical partial least square (PLS) to predict the skin permeability coefficient and to uncover the intrinsic permeation mechanism, respectively, based on ex vivo excised human skin permeability data compiled from the literature. The derived HSVR model functioned better than PLS as represented by the predictive performance in the training set, test set, and outlier set in addition to various statistical estimations. HSVR also delivered consistent performance upon the application of a mock test, which purposely mimicked the real challenges. PLS, contrarily, uncovered the interpretable relevance between selected descriptors and skin permeability. Thus, the synergy between interpretable PLS and predictive HSVR models can be of great use for facilitating drug discovery and development by predicting skin permeability.

摘要

局部和透皮给药是一种有效、安全且首选的给药途径。因此,皮肤渗透性是药物研发过程中应考虑的关键参数之一。离体人体皮肤模型被认为是评估体内皮肤渗透性的最佳替代模型。本研究采用了一种新颖的双定量构效关系方案,通过结合基于机器学习的分层支持向量回归(HSVR)和经典偏最小二乘法(PLS),分别基于从文献中收集的离体切除人体皮肤渗透性数据来预测皮肤渗透系数并揭示内在渗透机制。除各种统计估计外,从训练集、测试集和异常值集的预测性能来看,所推导的HSVR模型比PLS表现更好。在应用模拟测试时,HSVR也表现出一致的性能,该模拟测试特意模拟了实际挑战。相反,PLS揭示了所选描述符与皮肤渗透性之间的可解释相关性。因此,可解释的PLS模型和预测性HSVR模型之间的协同作用对于通过预测皮肤渗透性促进药物研发可能非常有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3123/9143389/892f95a84e36/pharmaceutics-14-00961-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验