Luo Ruoyu, Wei Haibin, Ye Lin, Wang Kankan, Chen Fan, Luo Lijun, Liu Lei, Li Yuanyuan, Crabbe M James C, Jin Li, Li Yixue, Zhong Yang
Key Laboratory of Systems Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200020, China.
Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):847-52. doi: 10.1073/pnas.0810731105. Epub 2009 Jan 7.
We studied the robustness of photosynthetic metabolism in the chloroplasts of C(3) plants under drought stress and at high CO(2) concentration conditions by using a method called Minimization of Metabolic Adjustment Dynamic Flux Balance Analysis (M_DFBA). Photosynthetic metabolism in the chloroplasts of C(3) plants applies highly cooperative regulation to minimize the fluctuation of metabolite concentration profiles in the face of transient perturbations. Our work suggests that highly cooperative regulation assures the robustness of the biological system and that there is closer cooperation under perturbation conditions than under normal conditions. This results in minimizing fluctuations in the profiles of metabolite concentrations, which is the key to maintaining a system's function. Our methods help in understanding such phenomena and the mechanisms of robustness for complex metabolic networks in dynamic processes.
我们通过一种称为代谢调节动态通量平衡分析最小化(M_DFBA)的方法,研究了C(3)植物叶绿体在干旱胁迫和高二氧化碳浓度条件下光合代谢的稳健性。C(3)植物叶绿体中的光合代谢采用高度协同的调节方式,以在面对瞬态扰动时最小化代谢物浓度分布的波动。我们的研究表明,高度协同的调节确保了生物系统的稳健性,并且在扰动条件下比正常条件下存在更紧密的协作。这导致代谢物浓度分布的波动最小化,这是维持系统功能的关键。我们的方法有助于理解此类现象以及动态过程中复杂代谢网络的稳健性机制。