Suppr超能文献

斑纹突变胚胎中胸腺注定器官域增加而甲状旁腺注定器官域减少。

Increased thymus- and decreased parathyroid-fated organ domains in Splotch mutant embryos.

作者信息

Griffith Ann V, Cardenas Kim, Carter Carla, Gordon Julie, Iberg Aimee, Engleka Kurt, Epstein Jonathan A, Manley Nancy R, Richie Ellen R

机构信息

Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park Research Division, Smithville, TX 78957, USA.

出版信息

Dev Biol. 2009 Mar 1;327(1):216-27. doi: 10.1016/j.ydbio.2008.12.019. Epub 2008 Dec 25.

Abstract

Embryos that are homozygous for Splotch, a null allele of Pax3, have a severe neural crest cell (NCC) deficiency that generates a complex phenotype including spina bifida, exencephaly and cardiac outflow tract abnormalities. Contrary to the widely held perception that thymus aplasia or hypoplasia is a characteristic feature of Pax3(Sp/Sp) embryos, we find that thymic rudiments are larger and parathyroid rudiments are smaller in E11.5-12.5 Pax3(Sp/Sp) compared to Pax3(+/+) embryos. The thymus originates from bilateral third pharyngeal pouch primordia containing endodermal progenitors of both thymus and parathyroid glands. Analyses of Foxn1 and Gcm2 expression revealed a dorsal shift in the border between parathyroid- and thymus-fated domains at E11.5, with no change in the overall cellularity or volume of each shared primordium. The border shift increases the allocation of third pouch progenitors to the thymus domain and correspondingly decreases allocation to the parathyroid domain. Initial patterning in the E10.5 pouch was normal suggesting that the observed change in the location of the organ domain interface arises during border refinement between E10.5 and E11.5. Given the well-characterized NCC defects in Splotch mutants, these findings implicate NCCs in regulating patterning of third pouch endoderm into thymus- versus parathyroid-specified domains, and suggest that organ size is determined in part by the number of progenitor cells specified to a given fate.

摘要

Splotch(Pax3的一个无效等位基因)纯合的胚胎存在严重的神经嵴细胞(NCC)缺陷,会产生包括脊柱裂、无脑畸形和心脏流出道异常在内的复杂表型。与普遍认为胸腺发育不全或发育不良是Pax3(Sp/Sp)胚胎的特征性表现相反,我们发现,与Pax3(+/+)胚胎相比,E11.5 - 12.5期的Pax3(Sp/Sp)胚胎的胸腺原基更大,甲状旁腺原基更小。胸腺起源于双侧第三咽囊原基,其中包含胸腺和甲状旁腺的内胚层祖细胞。对Foxn1和Gcm2表达的分析显示,在E11.5时,甲状旁腺和胸腺命运区域之间的边界发生了背侧移位,而每个共享原基的总体细胞数量或体积没有变化。边界移位增加了第三咽囊祖细胞向胸腺区域的分配,相应地减少了向甲状旁腺区域的分配。E10.5咽囊的初始模式是正常的,这表明观察到的器官区域界面位置的变化发生在E10.5和E11.5之间的边界细化过程中。鉴于Splotch突变体中已明确的NCC缺陷,这些发现表明NCC在调节第三咽囊内胚层向胸腺与甲状旁腺特定区域的模式形成中发挥作用,并表明器官大小部分由指定给特定命运的祖细胞数量决定。

相似文献

1
Increased thymus- and decreased parathyroid-fated organ domains in Splotch mutant embryos.
Dev Biol. 2009 Mar 1;327(1):216-27. doi: 10.1016/j.ydbio.2008.12.019. Epub 2008 Dec 25.
2
Patterning of the third pharyngeal pouch into thymus/parathyroid by Six and Eya1.
Dev Biol. 2006 May 15;293(2):499-512. doi: 10.1016/j.ydbio.2005.12.015. Epub 2006 Mar 10.
5
Eya1 is required for the morphogenesis of mammalian thymus, parathyroid and thyroid.
Development. 2002 Jul;129(13):3033-44. doi: 10.1242/dev.129.13.3033.
6
Gcm2 is required for the differentiation and survival of parathyroid precursor cells in the parathyroid/thymus primordia.
Dev Biol. 2007 May 1;305(1):333-46. doi: 10.1016/j.ydbio.2007.02.014. Epub 2007 Feb 21.
7
Bmp4 and Noggin expression during early thymus and parathyroid organogenesis.
Gene Expr Patterns. 2006 Oct;6(8):794-9. doi: 10.1016/j.modgep.2006.01.011. Epub 2006 Mar 6.
8
Tissue-specific roles for sonic hedgehog signaling in establishing thymus and parathyroid organ fate.
Development. 2016 Nov 1;143(21):4027-4037. doi: 10.1242/dev.141903. Epub 2016 Sep 15.
9
Evidence for an early role for BMP4 signaling in thymus and parathyroid morphogenesis.
Dev Biol. 2010 Mar 1;339(1):141-54. doi: 10.1016/j.ydbio.2009.12.026. Epub 2010 Jan 4.
10

引用本文的文献

2
Thymus Ontogeny and Development.
Adv Exp Med Biol. 2025;1471:21-49. doi: 10.1007/978-3-031-77921-3_2.
3
Cellular and molecular mechanisms of the organogenesis and development, and function of the mammalian parathyroid gland.
Cell Tissue Res. 2023 Sep;393(3):425-442. doi: 10.1007/s00441-023-03785-3. Epub 2023 Jul 6.
4
Non-Epithelial Stromal Cells in Thymus Development and Function.
Front Immunol. 2021 Feb 25;12:634367. doi: 10.3389/fimmu.2021.634367. eCollection 2021.
6
Thymus Inception: Molecular Network in the Early Stages of Thymus Organogenesis.
Int J Mol Sci. 2020 Aug 11;21(16):5765. doi: 10.3390/ijms21165765.
7
Molecular Insights Into the Causes of Human Thymic Hypoplasia With Animal Models.
Front Immunol. 2020 May 5;11:830. doi: 10.3389/fimmu.2020.00830. eCollection 2020.
8
Tissue-specific roles for sonic hedgehog signaling in establishing thymus and parathyroid organ fate.
Development. 2016 Nov 1;143(21):4027-4037. doi: 10.1242/dev.141903. Epub 2016 Sep 15.
9
Dynamic epithelia of the developing vertebrate face.
Curr Opin Genet Dev. 2015 Jun;32:66-72. doi: 10.1016/j.gde.2015.02.003. Epub 2015 Mar 3.
10
Multiple roles for HOXA3 in regulating thymus and parathyroid differentiation and morphogenesis in mouse.
Development. 2014 Oct;141(19):3697-708. doi: 10.1242/dev.110833. Epub 2014 Sep 5.

本文引用的文献

1
Contribution of neural crest-derived cells in the embryonic and adult thymus.
J Immunol. 2008 Mar 1;180(5):3183-9. doi: 10.4049/jimmunol.180.5.3183.
2
Mesenchymal cells are required for functional development of thymic epithelial cells.
Int Immunol. 2007 Aug;19(8):953-64. doi: 10.1093/intimm/dxm060. Epub 2007 Jul 11.
3
PDGFRalpha-expressing mesenchyme regulates thymus growth and the availability of intrathymic niches.
Blood. 2007 Feb 1;109(3):954-60. doi: 10.1182/blood-2006-05-023143. Epub 2006 Sep 28.
4
Coordination between CCR7- and CCR9-mediated chemokine signals in prevascular fetal thymus colonization.
Blood. 2006 Oct 15;108(8):2531-9. doi: 10.1182/blood-2006-05-024190. Epub 2006 Jun 29.
5
Bmp4 and Noggin expression during early thymus and parathyroid organogenesis.
Gene Expr Patterns. 2006 Oct;6(8):794-9. doi: 10.1016/j.modgep.2006.01.011. Epub 2006 Mar 6.
6
Cellular and molecular events during early thymus development.
Immunol Rev. 2006 Feb;209:28-46. doi: 10.1111/j.0105-2896.2006.00357.x.
7
Establishment and functioning of intrathymic microenvironments.
Immunol Rev. 2006 Feb;209:10-27. doi: 10.1111/j.0105-2896.2006.00347.x.
8
Keratinocyte growth factor (KGF) is required for postnatal thymic regeneration.
Blood. 2006 Mar 15;107(6):2453-60. doi: 10.1182/blood-2005-07-2831. Epub 2005 Nov 22.
9
BMP signaling is required for normal thymus development.
J Immunol. 2005 Oct 15;175(8):5213-21. doi: 10.4049/jimmunol.175.8.5213.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验