Suppr超能文献

针对院前医护人员检测气胸和肺水肿的胸部超声培训模块评估。

Evaluation of a thoracic ultrasound training module for the detection of pneumothorax and pulmonary edema by prehospital physician care providers.

作者信息

Noble Vicki E, Lamhaut Lionel, Capp Roberta, Bosson Nichole, Liteplo Andrew, Marx Jean-Sebastian, Carli Pierre

机构信息

Department of Emergency Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, Massachusetts, USA.

出版信息

BMC Med Educ. 2009 Jan 12;9:3. doi: 10.1186/1472-6920-9-3.

Abstract

BACKGROUND

While ultrasound (US) has continued to expedite diagnosis and therapy for critical care physicians inside the hospital system, the technology has been slow to diffuse into the pre-hospital system. Given the diagnostic benefits of thoracic ultrasound (TUS), we sought to evaluate image recognition skills for two important TUS applications; the identification of B-lines (used in the US diagnosis of pulmonary edema) and the identification of lung sliding and comet tails (used in the US diagnosis of pneumothorax). In particular we evaluated the impact of a focused training module in a pre-hospital system that utilizes physicians as pre-hospital providers.

METHODS

27 Paris Service D'Aide Médicale Urgente (SAMU) physicians at the Hôpital Necker with varying levels of US experience were given two twenty-five image recognition pre-tests; the first test had examples of both normal and pneumothorax lung US and the second had examples of both normal and pulmonary edema lung US. All 27 physicians then underwent the same didactic training modules. A post-test was administered upon completing the training module and results were recorded.

RESULTS

Pre and post-test scores were compared for both the pneumothorax and the pulmonary edema modules. For the pneumothorax module, mean test scores increased from 10.3 +/- 4.1 before the training to 20.1 +/- 3.5 after (p < 0.0001), out of 25 possible points. The standard deviation decreased as well, indicating a collective improvement. For the pulmonary edema module, mean test scores increased from 14.1 +/- 5.2 before the training to 20.9 +/- 2.4 after (p < 0.0001), out of 25 possible points. The standard deviation decreased again by more than half, indicating a collective improvement.

CONCLUSION

This brief training module resulted in significant improvement of image recognition skills for physicians both with and without previous ultrasound experience. Given that rapid diagnosis of these conditions in the pre-hospital system can change therapy, especially in systems where physicians can integrate this information into treatment decisions, the further diffusion of this technology would seem to be beneficial and deserves further study.

摘要

背景

虽然超声(US)已持续加快医院系统内重症监护医师的诊断和治疗速度,但该技术在院前系统中的普及却很缓慢。鉴于胸部超声(TUS)的诊断优势,我们试图评估两种重要的TUS应用的图像识别技能;识别B线(用于超声诊断肺水肿)以及识别肺滑动和彗尾征(用于超声诊断气胸)。特别是,我们评估了一个针对院前系统的集中培训模块的影响,该系统将医生用作院前急救人员。

方法

在内克尔医院,27名具有不同超声经验水平的巴黎紧急医疗服务(SAMU)医生接受了两项包含25幅图像识别的预测试;第一次测试有正常和气胸肺部超声的示例,第二次测试有正常和肺水肿肺部超声的示例。所有27名医生随后都接受了相同的理论培训模块。完成培训模块后进行了后测试,并记录了结果。

结果

对气胸和肺水肿模块的测试前和测试后分数进行了比较。对于气胸模块,在满分25分的情况下,平均测试分数从培训前的10.3±4.1提高到培训后的20.1±3.5(p<0.0001)。标准差也有所下降,表明整体有所改善。对于肺水肿模块,在满分25分的情况下,平均测试分数从培训前的14.1±5.2提高到培训后的20.9±2.4(p<0.0001)。标准差再次下降超过一半,表明整体有所改善。

结论

这个简短的培训模块使有超声经验和无超声经验的医生的图像识别技能都有了显著提高。鉴于在院前系统中对这些病症进行快速诊断可以改变治疗方案,特别是在医生能够将这些信息整合到治疗决策中的系统中,这项技术的进一步普及似乎是有益的,值得进一步研究。

相似文献

3
4
Advances in Point-of-Care Thoracic Ultrasound.床旁胸部超声检查的进展
Emerg Med Clin North Am. 2016 Feb;34(1):151-7. doi: 10.1016/j.emc.2015.09.003.
10
Current role of emergency ultrasound of the chest.目前胸部急症超声的作用。
Crit Care Med. 2011 Apr;39(4):839-45. doi: 10.1097/CCM.0b013e318206d6b8.

引用本文的文献

6
Lung Sonography in Critical Care Medicine.重症医学中的肺部超声检查
Diagnostics (Basel). 2022 Jun 6;12(6):1405. doi: 10.3390/diagnostics12061405.

本文引用的文献

3
Focused ultrasound training for clinicians.面向临床医生的聚焦超声培训。
Crit Care Med. 2007 May;35(5 Suppl):S138-43. doi: 10.1097/01.CCM.0000260625.63077.05.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验