Suppr超能文献

一种整合基因组和临床特征的肺癌诊断预测模型。

A prediction model for lung cancer diagnosis that integrates genomic and clinical features.

作者信息

Beane Jennifer, Sebastiani Paola, Whitfield Theodore H, Steiling Katrina, Dumas Yves-Martine, Lenburg Marc E, Spira Avrum

机构信息

The Pulmonary Center, Boston University Medical Center, Boston, MA 02118, USA.

出版信息

Cancer Prev Res (Phila). 2008 Jun;1(1):56-64. doi: 10.1158/1940-6207.CAPR-08-0011. Epub 2008 Mar 31.

Abstract

Lung cancer is the leading cause of cancer death due, in part, to lack of early diagnostic tools. Bronchoscopy represents a relatively noninvasive initial diagnostic test in smokers with suspect disease, but it has low sensitivity. We have reported a gene expression profile in cytologically normal large airway epithelium obtained via bronchoscopic brushings, which is a sensitive and specific biomarker for lung cancer. Here, we evaluate the independence of the biomarker from other clinical risk factors and determine the performance of a clinicogenomic model that combines clinical factors and gene expression. Training (n = 76) and test (n = 62) sets consisted of smokers undergoing bronchoscopy for suspicion of lung cancer at five medical centers. Logistic regression models describing the likelihood of having lung cancer using the biomarker, clinical factors, and these data combined were tested using the independent set of patients with nondiagnostic bronchoscopies. The model predictions were also compared with physicians' clinical assessment. The gene expression biomarker is associated with cancer status in the combined clinicogenomic model (P < 0.005). There is a significant difference in performance of the clinicogenomic relative to the clinical model (P < 0.05). In the test set, the clinicogenomic model increases sensitivity and negative predictive value to 100% and results in higher specificity (91%) and positive predictive value (81%) compared with other models. The clinicogenomic model has high accuracy where physician assessment is most uncertain. The airway gene expression biomarker provides information about the likelihood of lung cancer not captured by clinical factors, and the clinicogenomic model has the highest prediction accuracy. These findings suggest that use of the clinicogenomic model may expedite more invasive testing and definitive therapy for smokers with lung cancer and reduce invasive diagnostic procedures for individuals without lung cancer.

摘要

肺癌是癌症死亡的主要原因,部分原因是缺乏早期诊断工具。支气管镜检查是对疑似疾病的吸烟者进行的一种相对无创的初步诊断测试,但它的敏感性较低。我们报告了通过支气管镜刷检获得的细胞学正常的大气道上皮细胞中的基因表达谱,这是一种用于肺癌的敏感且特异的生物标志物。在此,我们评估该生物标志物相对于其他临床风险因素的独立性,并确定结合临床因素和基因表达的临床基因组模型的性能。训练集(n = 76)和测试集(n = 62)由在五个医疗中心因怀疑肺癌而接受支气管镜检查的吸烟者组成。使用独立的非诊断性支气管镜检查患者数据集,测试了使用该生物标志物、临床因素以及两者结合来描述患肺癌可能性的逻辑回归模型。还将模型预测结果与医生的临床评估进行了比较。在联合临床基因组模型中,基因表达生物标志物与癌症状态相关(P < 0.005)。临床基因组模型与临床模型在性能上存在显著差异(P < 0.05)。在测试集中,临床基因组模型将敏感性和阴性预测值提高到100%,与其他模型相比,特异性更高(91%),阳性预测值更高(81%)。在医生评估最不确定的情况下,临床基因组模型具有较高的准确性。气道基因表达生物标志物提供了临床因素未捕捉到的肺癌可能性信息,并且临床基因组模型具有最高的预测准确性。这些发现表明,使用临床基因组模型可能会加快对肺癌吸烟者进行更具侵入性的检测和确定性治疗,并减少对无肺癌个体的侵入性诊断程序。

相似文献

1
A prediction model for lung cancer diagnosis that integrates genomic and clinical features.
Cancer Prev Res (Phila). 2008 Jun;1(1):56-64. doi: 10.1158/1940-6207.CAPR-08-0011. Epub 2008 Mar 31.
2
Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer.
Nat Med. 2007 Mar;13(3):361-6. doi: 10.1038/nm1556. Epub 2007 Mar 4.
4
Alterations in Bronchial Airway miRNA Expression for Lung Cancer Detection.
Cancer Prev Res (Phila). 2017 Nov;10(11):651-659. doi: 10.1158/1940-6207.CAPR-17-0098. Epub 2017 Sep 6.
5
Early detection of lung cancer by molecular markers in endobronchial epithelial-lining fluid.
J Thorac Oncol. 2012 Jun;7(6):1001-8. doi: 10.1097/JTO.0b013e31824fe921.
6
Shared Gene Expression Alterations in Nasal and Bronchial Epithelium for Lung Cancer Detection.
J Natl Cancer Inst. 2017 Jul 1;109(7). doi: 10.1093/jnci/djw327.
8
The Airway Transcriptome as a Biomarker for Early Lung Cancer Detection.
Clin Cancer Res. 2018 Jul 1;24(13):2984-2992. doi: 10.1158/1078-0432.CCR-16-3187. Epub 2018 Feb 20.
9
Prediction of lung cancer based on serum biomarkers by gene expression programming methods.
Asian Pac J Cancer Prev. 2014;15(21):9367-73. doi: 10.7314/apjcp.2014.15.21.9367.
10
A Bronchial Genomic Classifier for the Diagnostic Evaluation of Lung Cancer.
N Engl J Med. 2015 Jul 16;373(3):243-51. doi: 10.1056/NEJMoa1504601. Epub 2015 May 17.

引用本文的文献

4
Radiomics based likelihood functions for cancer diagnosis.
Sci Rep. 2019 Jul 1;9(1):9501. doi: 10.1038/s41598-019-45053-x.
6
The impact of patients' preferences on the decision of low-dose computed tomography lung cancer screening.
Transl Lung Cancer Res. 2018 Sep;7(Suppl 3):S236-S238. doi: 10.21037/tlcr.2018.08.17.
8
The Airway Transcriptome as a Biomarker for Early Lung Cancer Detection.
Clin Cancer Res. 2018 Jul 1;24(13):2984-2992. doi: 10.1158/1078-0432.CCR-16-3187. Epub 2018 Feb 20.
9
Genomic approaches to accelerate cancer interception.
Lancet Oncol. 2017 Aug;18(8):e494-e502. doi: 10.1016/S1470-2045(17)30373-X. Epub 2017 Jul 26.
10
Detecting the Presence and Progression of Premalignant Lung Lesions via Airway Gene Expression.
Clin Cancer Res. 2017 Sep 1;23(17):5091-5100. doi: 10.1158/1078-0432.CCR-16-2540. Epub 2017 May 22.

本文引用的文献

1
18Fluorodeoxyglucose positron emission tomography in the diagnosis and staging of lung cancer: a systematic review.
J Natl Cancer Inst. 2007 Dec 5;99(23):1753-67. doi: 10.1093/jnci/djm232. Epub 2007 Nov 27.
3
A risk model for prediction of lung cancer.
J Natl Cancer Inst. 2007 May 2;99(9):715-26. doi: 10.1093/jnci/djk153.
4
Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer.
Nat Med. 2007 Mar;13(3):361-6. doi: 10.1038/nm1556. Epub 2007 Mar 4.
5
Embracing the complexity of genomic data for personalized medicine.
Genome Res. 2006 May;16(5):559-66. doi: 10.1101/gr.3851306.
6
Survival prediction of diffuse large-B-cell lymphoma based on both clinical and gene expression information.
Bioinformatics. 2006 Feb 15;22(4):466-71. doi: 10.1093/bioinformatics/bti824. Epub 2005 Dec 8.
7
Modeling lung cancer risk in case-control studies using a new dose metric of smoking.
Cancer Epidemiol Biomarkers Prev. 2005 Oct;14(10):2296-302. doi: 10.1158/1055-9965.EPI-04-0393.
8
Bronchoscopy for lung cancer.
Chest. 2005 Jul;128(1):16-8. doi: 10.1378/chest.128.1.16.
10
Global cancer statistics, 2002.
CA Cancer J Clin. 2005 Mar-Apr;55(2):74-108. doi: 10.3322/canjclin.55.2.74.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验