Suppr超能文献

量化神经影像数据中视觉区域边界的空间不确定性。

Quantifying spatial uncertainty of visual area boundaries in neuroimaging data.

作者信息

Kirson Dean, Huk Alexander C, Cormack Lawrence K

机构信息

Section of Neurobiology, Center for Perceptual Systems, Imaging Research Center, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA.

出版信息

J Vis. 2008 Dec 17;8(10):10.1-15. doi: 10.1167/8.10.10.

Abstract

Functional magnetic resonance imaging (fMRI) of the human brain has provided much information about visual cortex. These insights hinge on researchers' ability to identify cortical areas based on stimulus selectivity and retinotopic mapping. However, border identification around regions of interest or between retinotopic maps is often performed without characterizing the degree of certainty associated with the location of these key features; ideally, assertions about the location of boundaries would have an associated spatial confidence interval. We describe an approach that allows researchers to transform estimates of error in the intensive dimension (i.e., activation of voxels) to the spatial dimension (i.e., the location of features evident in patterns across voxels). We implement the approach by bootstrapping, with applications to: (1) the location of human MT+ and (2) the location of the V1/V2 boundary. The transformation of intensive to spatial error furnishes graphical, intuitive characterizations of spatial uncertainty akin to error bars on the borders of visual areas, instead of the conventional practice of computing and thresholding p-values for voxels. This approach provides a general, unbiased arena for evaluating: (1) competing conceptions of visual area organization; (2) analysis technique efficacy; and (3) data quality.

摘要

人类大脑的功能磁共振成像(fMRI)已经提供了许多关于视觉皮层的信息。这些见解取决于研究人员基于刺激选择性和视网膜拓扑映射来识别皮层区域的能力。然而,在感兴趣区域周围或视网膜拓扑图之间进行边界识别时,通常没有对与这些关键特征位置相关的确定程度进行表征;理想情况下,关于边界位置的断言应该有一个相关的空间置信区间。我们描述了一种方法,该方法允许研究人员将强度维度(即体素的激活)中的误差估计转换为空间维度(即体素模式中明显特征的位置)。我们通过自举法来实现该方法,并将其应用于:(1)人类MT+的位置;(2)V1/V2边界的位置。将强度误差转换为空间误差,为空间不确定性提供了图形化、直观的表征,类似于视觉区域边界上误差条的表征,而不是对体素计算和阈值化p值的传统做法。这种方法为评估以下内容提供了一个通用的、无偏的平台:(1)视觉区域组织的竞争概念;(2)分析技术的有效性;(3)数据质量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验