Bordier Cécile, Hupé Jean-Michel, Dojat Michel
Grenoble Institut des Neurosciences, Université Grenoble Alpes Grenoble, France ; Inserm, U836 Grenoble, France.
Centre de Recherche Cerveau et Cognition, Université de Toulouse and Centre National de la Recherche Scientifique Toulouse, France.
Front Hum Neurosci. 2015 May 19;9:277. doi: 10.3389/fnhum.2015.00277. eCollection 2015.
FMRI retinotopic mapping is a non-invasive technique for the delineation of low-level visual areas in individual subjects. It generally relies upon the analysis of functional responses to periodic visual stimuli that encode eccentricity or polar angle in the visual field. This technique is used in vision research when the precise assignation of brain activation to retinotopic areas is an issue. It involves processing steps computed with different algorithms and embedded in various software suites. Manual intervention may be needed for some steps. Although the diversity of the available processing suites and manual interventions may potentially introduce some differences in the final delineation of visual areas, no documented comparison between maps obtained with different procedures has been reported in the literature. To explore the effect of the processing steps on the quality of the maps obtained, we used two tools, BALC, which relies on a fully automated procedure, and BrainVoyager, where areas are delineated "by hand" on the brain surface. To focus on the mapping procedures specifically, we used the same SPM pipeline for pretreatment and the same tissue segmentation tool. We document the consistency and differences of the fMRI retinotopic maps obtained from "routine retinotopy" experiments on 10 subjects. The maps obtained by skilled users are never fully identical. However, the agreement between the maps, around 80% for low-level areas, is probably sufficient for most applications. Our results also indicate that assigning cognitive activations, following a specific experiment (here, color perception), to individual retinotopic maps is not free of errors. We provide measurements of this error, that may help for the cautious interpretation of cognitive activation projection onto fMRI retinotopic maps. On average, the magnitude of the error is about 20%, with much larger differences in a few subjects. More variability may even be expected with less trained users or using different acquisition parameters and preprocessing chains.
功能磁共振成像视网膜拓扑映射是一种用于描绘个体受试者低层次视觉区域的非侵入性技术。它通常依赖于对周期性视觉刺激的功能反应进行分析,这些刺激编码视野中的离心率或极角。当将大脑激活精确地分配到视网膜拓扑区域成为一个问题时,这种技术被用于视觉研究。它涉及用不同算法计算并嵌入各种软件套件中的处理步骤。某些步骤可能需要人工干预。尽管可用处理套件和人工干预的多样性可能会在视觉区域的最终描绘中引入一些差异,但文献中尚未报道过不同程序获得的图谱之间的比较记录。为了探究处理步骤对所获得图谱质量的影响,我们使用了两种工具,一种是依赖全自动程序的BALC,另一种是在大脑表面“手动”描绘区域的BrainVoyager。为了专门关注映射程序,我们对预处理使用相同的统计参数映射(SPM)管道和相同的组织分割工具。我们记录了从10名受试者的“常规视网膜拓扑学”实验中获得的功能磁共振成像视网膜拓扑图谱的一致性和差异。由熟练用户获得的图谱从未完全相同。然而,图谱之间的一致性,对于低层次区域约为80%,可能对大多数应用来说已经足够。我们的结果还表明,在特定实验(这里是颜色感知)之后,将认知激活分配到个体视网膜拓扑图谱并非没有误差。我们提供了这种误差的测量方法,这可能有助于谨慎地解释认知激活在功能磁共振成像视网膜拓扑图谱上的投射。平均而言,误差幅度约为20%,少数受试者的差异要大得多。对于训练较少的用户或使用不同的采集参数和预处理链,甚至可能预期有更大的变异性。