Suppr超能文献

颅内高压时的脑血流自动调节:一种简单的纯液压机制?

Cerebral blood flow autoregulation during intracranial hypertension: a simple, purely hydraulic mechanism?

作者信息

Anile C, De Bonis P, Di Chirico A, Ficola A, Mangiola A, Petrella G

机构信息

Institute of Neurosurgery, Catholic University, l. go A. Gemelli, 8, 00168 Rome, Italy.

出版信息

Childs Nerv Syst. 2009 Mar;25(3):325-35; discussion 337-40. doi: 10.1007/s00381-008-0749-7. Epub 2009 Jan 17.

Abstract

OBJECTIVE

In this paper, we re-propose the role of a hydraulic mechanism, acting where the bridging veins enter the dural sinuses in cerebral blood flow (CBF) autoregulation.

MATERIALS AND METHODS

We carried out an intraventricular infusion in ten albino rabbits and increased intracranial pressure (ICP) up to arterial blood pressure (ABP) levels. We measured CBF velocity by an ultrasound probe applied to a by-pass inserted in a carotid artery and recorded ICP by an intraventricular needle. Diastolic and pulsatile ICP and ABP values were analyzed from basal conditions up to brain tamponade and vice versa.

CONCLUSIONS

A biphasic pattern of pulsatile intracranial pressure (pICP) was observed in all trials. Initially, until the CBF velocity remained constant, pICP increased (from 1.2 to 5.4 mmHg) following a rise in diastolic intracranial pressure (dICP); thereafter, in spite of a further rise in dICP, pICP decreased (2.87 mmHg) following CBF velocity reduction until intracranial circulation arrest (pICP=1.2 mmHg). A specular pattern was observed when the intraventricular infusion was stopped and CBF velocity returned to basal levels. These findings can be interpreted as indicating a hydraulic mechanism. Initially, when CBF is still constant, pICP rise is due to an increase in venous outflow resistance; subsequently, when CBF decreases following a further increase in venous outflow resistance, the vascular engorgement produces an arteriolar vasodilation. This vasodilation determines an increase in vascular wall stiffness, thus reducing pulse transmission to surrounding subarachnoid spaces.

摘要

目的

在本文中,我们重新提出一种液压机制在脑血流(CBF)自动调节中桥静脉进入硬脑膜窦处的作用。

材料与方法

我们对10只白化兔进行脑室内输注,并将颅内压(ICP)升高至动脉血压(ABP)水平。我们通过应用于插入颈动脉的旁路的超声探头测量CBF速度,并通过脑室内针记录ICP。分析从基础状态到脑受压期间以及反之的舒张期和搏动性ICP及ABP值。

结论

在所有试验中均观察到搏动性颅内压(pICP)的双相模式。最初,在CBF速度保持恒定之前,随着舒张期颅内压(dICP)升高,pICP升高(从1.2至5.4 mmHg);此后,尽管dICP进一步升高,但随着CBF速度降低直至颅内循环停止(pICP = 1.2 mmHg),pICP降低(2.87 mmHg)。当停止脑室内输注且CBF速度恢复至基础水平时观察到相反的模式。这些发现可解释为表明存在一种液压机制。最初当CBF仍恒定时,pICP升高是由于静脉流出阻力增加;随后,当静脉流出阻力进一步增加导致CBF降低时,血管充血导致小动脉血管舒张。这种血管舒张决定了血管壁硬度增加,从而减少了脉搏向周围蛛网膜下腔的传导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验