Suppr超能文献

严重急性呼吸综合征冠状病毒nsp9二聚化对于病毒的高效生长至关重要。

Severe acute respiratory syndrome coronavirus nsp9 dimerization is essential for efficient viral growth.

作者信息

Miknis Zachary J, Donaldson Eric F, Umland Timothy C, Rimmer Ryan A, Baric Ralph S, Schultz L Wayne

机构信息

Department of Structural Biology, State University of New York at Buffalo, Buffalo, New York 14203, USA.

出版信息

J Virol. 2009 Apr;83(7):3007-18. doi: 10.1128/JVI.01505-08. Epub 2009 Jan 19.

Abstract

The severe acute respiratory syndrome coronavirus (SARS-CoV) devotes a significant portion of its genome to producing nonstructural proteins required for viral replication. SARS-CoV nonstructural protein 9 (nsp9) was identified as an essential protein with RNA/DNA-binding activity, and yet its biological function within the replication complex remains unknown. Nsp9 forms a dimer through the interaction of parallel alpha-helices containing the protein-protein interaction motif GXXXG. In order to study the role of the nsp9 dimer in viral reproduction, residues G100 and G104 at the helix interface were targeted for mutation. Multi-angle light scattering measurements indicated that G100E, G104E, and G104V mutants are monomeric in solution, thereby disrupting the dimer. However, electrophoretic mobility assays revealed that the mutants bound RNA with similar affinity. Further experiments using fluorescence anisotropy showed a 10-fold reduction in RNA binding in the G100E and G104E mutants, whereas the G104V mutant had only a 4-fold reduction. The structure of G104E nsp9 was determined to 2.6-A resolution, revealing significant changes at the dimer interface. The nsp9 mutations were introduced into SARS-CoV using a reverse genetics approach, and the G100E and G104E mutations were found to be lethal to the virus. The G104V mutant produced highly debilitated virus and eventually reverted back to the wild-type protein sequence through a codon transversion. Together, these data indicate that dimerization of SARS-CoV nsp9 at the GXXXG motif is not critical for RNA binding but is necessary for viral replication.

摘要

严重急性呼吸综合征冠状病毒(SARS-CoV)将其基因组的很大一部分用于产生病毒复制所需的非结构蛋白。SARS-CoV非结构蛋白9(nsp9)被鉴定为一种具有RNA/DNA结合活性的必需蛋白,但其在复制复合物中的生物学功能仍不清楚。Nsp9通过包含蛋白质-蛋白质相互作用基序GXXXG的平行α-螺旋的相互作用形成二聚体。为了研究nsp9二聚体在病毒繁殖中的作用,将螺旋界面处的G100和G104残基作为突变靶点。多角度光散射测量表明,G100E、G104E和G104V突变体在溶液中为单体,从而破坏了二聚体。然而,电泳迁移率分析显示,这些突变体以相似的亲和力结合RNA。使用荧光各向异性的进一步实验表明,G100E和G104E突变体的RNA结合减少了10倍,而G104V突变体仅减少了4倍。G104E nsp9的结构被确定为2.6埃分辨率,揭示了二聚体界面处的显著变化。使用反向遗传学方法将nsp9突变引入SARS-CoV,发现G100E和G104E突变对病毒是致命的。G104V突变体产生高度衰弱的病毒,并最终通过密码子颠换恢复为野生型蛋白质序列。总之,这些数据表明,SARS-CoV nsp9在GXXXG基序处的二聚化对RNA结合并不关键,但对病毒复制是必要的。

相似文献

3
Variable oligomerization modes in coronavirus non-structural protein 9.冠状病毒非结构蛋白9中的可变寡聚化模式
J Mol Biol. 2008 Nov 28;383(5):1081-96. doi: 10.1016/j.jmb.2008.07.071. Epub 2008 Jul 30.

引用本文的文献

4
Assessing nanobody interaction with SARS-CoV-2 Nsp9.评估纳米抗体与 SARS-CoV-2 Nsp9 的相互作用。
PLoS One. 2024 May 17;19(5):e0303839. doi: 10.1371/journal.pone.0303839. eCollection 2024.

本文引用的文献

3
Variable oligomerization modes in coronavirus non-structural protein 9.冠状病毒非结构蛋白9中的可变寡聚化模式
J Mol Biol. 2008 Nov 28;383(5):1081-96. doi: 10.1016/j.jmb.2008.07.071. Epub 2008 Jul 30.
7
MolProbity: all-atom contacts and structure validation for proteins and nucleic acids.MolProbity:蛋白质和核酸的全原子接触与结构验证
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W375-83. doi: 10.1093/nar/gkm216. Epub 2007 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验