Hu Tingting, Chen Cheng, Li Huiyan, Dou Yanshu, Zhou Ming, Lu Deren, Zong Qi, Li Yulei, Yang Cheng, Zhong Zhihui, Singh Namit, Hu Honggang, Zhang Rundong, Yang Haitao, Su Dan
State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China.
School of Life Sciences, Tianjin University, Tianjin, 300072, P.R. China.
Protein Sci. 2017 May;26(5):1037-1048. doi: 10.1002/pro.3150. Epub 2017 Apr 20.
The potential for infection by coronaviruses (CoVs) has become a serious concern with the recent emergence of Middle East respiratory syndrome and severe acute respiratory syndrome (SARS) in the human population. CoVs encode two large polyproteins, which are then processed into 15-16 nonstructural proteins (nsps) that make significant contributions to viral replication and transcription by assembling the RNA replicase complex. Among them, nsp9 plays an essential role in viral replication by forming a homodimer that binds single-stranded RNA. Thus, disrupting nsp9 dimerization is a potential anti-CoV therapy. However, different nsp9 dimer forms have been reported for alpha- and beta-CoVs, and no structural information is available for gamma-CoVs. Here we determined the crystal structure of nsp9 from the avian infectious bronchitis virus (IBV), a representative gamma-CoV that affects the economy of the poultry industry because it can infect domestic fowl. IBV nsp9 forms a homodimer via interactions across a hydrophobic interface, which consists of two parallel alpha helices near the carboxy terminus of the protein. The IBV nsp9 dimer resembles that of SARS-CoV nsp9, indicating that this type of dimerization is conserved among all CoVs. This makes disruption of the dimeric interface an excellent strategy for developing anti-CoV therapies. To facilitate this effort, we characterized the roles of six conserved residues on this interface using site-directed mutagenesis and a multitude of biochemical and biophysical methods. We found that three residues are critical for nsp9 dimerization and its abitlity to bind RNA.
随着中东呼吸综合征和严重急性呼吸综合征(SARS)近期在人群中的出现,冠状病毒(CoV)的感染可能性已成为一个严重问题。CoV编码两种大的多聚蛋白,随后被加工成15 - 16种非结构蛋白(nsps),这些蛋白通过组装RNA复制酶复合物对病毒复制和转录做出重大贡献。其中,nsp9通过形成结合单链RNA的同二聚体在病毒复制中发挥关键作用。因此,破坏nsp9二聚化是一种潜在的抗CoV疗法。然而,已报道α-和β-冠状病毒存在不同的nsp9二聚体形式,而关于γ-冠状病毒的结构信息尚无报道。在此,我们确定了禽传染性支气管炎病毒(IBV)的nsp9晶体结构,IBV是一种代表性的γ-冠状病毒,因其可感染家禽而影响家禽业经济。IBV nsp9通过跨疏水界面的相互作用形成同二聚体,该界面由蛋白质羧基末端附近的两个平行α螺旋组成。IBV nsp9二聚体类似于SARS-CoV nsp9的二聚体,表明这种二聚化类型在所有冠状病毒中是保守的。这使得破坏二聚体界面成为开发抗CoV疗法的极佳策略。为推动这一工作,我们使用定点诱变以及多种生化和生物物理方法对该界面上六个保守残基的作用进行了表征。我们发现三个残基对nsp9二聚化及其结合RNA的能力至关重要。