Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.
Mol Cell. 2023 Nov 2;83(21):3921-3930.e7. doi: 10.1016/j.molcel.2023.10.001. Epub 2023 Oct 26.
The enzymatic activity of the SARS-CoV-2 nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain is essential for viral propagation, with three distinct activities associated with modification of the nsp9 N terminus, NMPylation, RNAylation, and deRNAylation/capping via a GDP-polyribonucleotidyltransferase reaction. The latter two activities comprise an unconventional mechanism for initiating viral RNA 5' cap formation, while the role of NMPylation is unclear. The structural mechanisms for these diverse enzymatic activities have not been properly delineated. Here, we determine high-resolution cryoelectron microscopy (cryo-EM) structures of catalytic intermediates for the NMPylation and deRNAylation/capping reactions, revealing diverse nucleotide binding poses and divalent metal ion coordination sites to promote its repertoire of activities. The deRNAylation/capping structure explains why GDP is a preferred substrate for the capping reaction over GTP. Altogether, these findings enhance our understanding of the promiscuous coronaviral NiRAN domain, a therapeutic target, and provide an accurate structural platform for drug development.
SARS-CoV-2 冠状病毒 RdRp 相关核苷酸转移酶 (NiRAN) 结构域的酶活性对病毒的繁殖至关重要,具有与修饰 nsp9 N 端、NMP 化、RNA 化和通过 GDP-聚核糖核苷酸转移酶反应进行的去 RNA 化/加帽相关的三种不同活性。后两种活性构成了一种启动病毒 RNA 5'帽形成的非传统机制,而 NMP 化的作用尚不清楚。这些不同的酶活性的结构机制尚未得到适当描述。在这里,我们确定了 NMP 化和去 RNA 化/加帽反应的催化中间体的高分辨率冷冻电镜 (cryo-EM) 结构,揭示了不同的核苷酸结合构象和二价金属离子配位位点,以促进其多种活性。去 RNA 化/加帽结构解释了为什么 GDP 是加帽反应的首选底物,而不是 GTP。总之,这些发现增强了我们对混杂的冠状病毒 NiRAN 结构域的理解,这是一个治疗靶点,并为药物开发提供了一个准确的结构平台。