Vasilaki Eleni, Fusi Stefano, Wang Xiao-Jing, Senn Walter
Institute of Physiology, University of Bern, Buehlplatz 5, 3012 Bern, Switzerland.
Biol Cybern. 2009 Feb;100(2):147-58. doi: 10.1007/s00422-008-0288-z. Epub 2009 Jan 20.
Given the complex structure of the brain, how can synaptic plasticity explain the learning and forgetting of associations when these are continuously changing? We address this question by studying different reinforcement learning rules in a multilayer network in order to reproduce monkey behavior in a visuomotor association task. Our model can only reproduce the learning performance of the monkey if the synaptic modifications depend on the pre- and postsynaptic activity, and if the intrinsic level of stochasticity is low. This favored learning rule is based on reward modulated Hebbian synaptic plasticity and shows the interesting feature that the learning performance does not substantially degrade when adding layers to the network, even for a complex problem.
鉴于大脑的复杂结构,当联想不断变化时,突触可塑性如何解释联想的学习和遗忘呢?我们通过研究多层网络中的不同强化学习规则来解决这个问题,以便在视觉运动联想任务中重现猴子的行为。只有当突触修饰取决于突触前和突触后活动,并且内在随机性水平较低时,我们的模型才能重现猴子的学习表现。这种有利的学习规则基于奖励调制的赫布突触可塑性,并且具有一个有趣的特征,即即使对于复杂问题,在向网络添加层时学习性能也不会大幅下降。