Suppr超能文献

用于步态正向动力学模拟的动态一致运动学和动力学的最优估计。

Optimal estimation of dynamically consistent kinematics and kinetics for forward dynamic simulation of gait.

作者信息

Remy C David, Thelen Darryl G

机构信息

Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Avenue, Madison, WI 53706, USA.

出版信息

J Biomech Eng. 2009 Mar;131(3):031005. doi: 10.1115/1.3005148.

Abstract

Forward dynamic simulation provides a powerful framework for characterizing internal loads and for predicting changes in movement due to injury, impairment or surgical intervention. However, the computational challenge of generating simulations has greatly limited the use and application of forward dynamic models for simulating human gait. In this study, we introduce an optimal estimation approach to efficiently solve for generalized accelerations that satisfy the overall equations of motion and best agree with measured kinematics and ground reaction forces. The estimated accelerations are numerically integrated to enforce dynamic consistency over time, resulting in a forward dynamic simulation. Numerical optimization is then used to determine a set of initial generalized coordinates and speeds that produce a simulation that is most consistent with the measured motion over a full cycle of gait. The proposed method was evaluated with synthetically created kinematics and force plate data in which both random noise and bias errors were introduced. We also applied the method to experimental gait data collected from five young healthy adults walking at a preferred speed. We show that the proposed residual elimination algorithm (REA) converges to an accurate solution, reduces the detrimental effects of kinematic measurement errors on joint moments, and eliminates the need for residual forces that arise in standard inverse dynamics. The greatest improvements in joint kinetics were observed proximally, with the algorithm reducing joint moment errors due to marker noise by over 20% at the hip and over 50% at the low back. Simulated joint angles were generally within 1 deg of recorded values when REA was used to generate a simulation from experimental gait data. REA can thus be used as a basis for generating accurate simulations of subject-specific gait dynamics.

摘要

正向动力学仿真为表征内部负荷以及预测因损伤、功能障碍或手术干预导致的运动变化提供了一个强大的框架。然而,生成仿真的计算挑战极大地限制了正向动力学模型在模拟人类步态方面的使用和应用。在本研究中,我们引入了一种最优估计方法,以有效地求解满足整体运动方程且与测量的运动学和地面反作用力最佳吻合的广义加速度。对估计的加速度进行数值积分,以确保随时间的动态一致性,从而得到正向动力学仿真。然后使用数值优化来确定一组初始广义坐标和速度,这些坐标和速度能生成在整个步态周期内与测量运动最一致的仿真。我们使用合成创建的运动学和测力板数据对所提出的方法进行了评估,其中引入了随机噪声和偏差误差。我们还将该方法应用于从五名年轻健康成年人以偏好速度行走时收集的实验步态数据。我们表明,所提出的残差消除算法(REA)收敛到精确解,减少了运动学测量误差对关节力矩的有害影响,并且消除了标准逆动力学中出现的残余力的需求。在近端观察到关节动力学的最大改善,该算法将由于标记噪声导致的髋关节力矩误差降低了20%以上,下背部降低了50%以上。当使用REA从实验步态数据生成仿真时,模拟的关节角度通常在记录值的1度范围内。因此,REA可作为生成特定个体步态动力学精确仿真的基础。

相似文献

3
Using computed muscle control to generate forward dynamic simulations of human walking from experimental data.
J Biomech. 2006;39(6):1107-15. doi: 10.1016/j.jbiomech.2005.02.010. Epub 2005 Jul 14.
5
Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis.
J Biomech. 2008 Dec 5;41(16):3390-8. doi: 10.1016/j.jbiomech.2008.09.035. Epub 2008 Nov 20.
7
Modeling initial contact dynamics during ambulation with dynamic simulation.
Med Biol Eng Comput. 2007 Apr;45(4):387-94. doi: 10.1007/s11517-007-0166-1. Epub 2007 Feb 1.
8
Whole body inverse dynamics over a complete gait cycle based only on measured kinematics.
J Biomech. 2008 Aug 28;41(12):2750-9. doi: 10.1016/j.jbiomech.2008.06.001. Epub 2008 Jul 30.
9
Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.
Gait Posture. 2016 Mar;45:62-8. doi: 10.1016/j.gaitpost.2016.01.005. Epub 2016 Jan 19.
10
Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
J Neuroeng Rehabil. 2021 Feb 5;18(1):27. doi: 10.1186/s12984-021-00825-3.

引用本文的文献

2
The quest for dynamic consistency: a comparison of OpenSim tools for residual reduction in simulations of human running.
R Soc Open Sci. 2024 May 1;11(5):231909. doi: 10.1098/rsos.231909. eCollection 2024 May.
3
The effect of modelling parameters in the development and validation of knee joint models on ligament mechanics: A systematic review.
PLoS One. 2022 Jan 27;17(1):e0262684. doi: 10.1371/journal.pone.0262684. eCollection 2022.
4
Computational Modeling: Human Dynamic Model.
Front Neurorobot. 2021 Sep 24;15:723428. doi: 10.3389/fnbot.2021.723428. eCollection 2021.
5
6
Computing muscle, ligament, and osseous contributions to the elbow varus moment during baseball pitching.
Ann Biomed Eng. 2015 Feb;43(2):404-15. doi: 10.1007/s10439-014-1144-z. Epub 2014 Oct 4.
7
Empirical evaluation of gastrocnemius and soleus function during walking.
J Biomech. 2014 Sep 22;47(12):2969-74. doi: 10.1016/j.jbiomech.2014.07.007. Epub 2014 Jul 15.
8
Stability radius as a method for comparing the dynamics of neuromechanical systems.
IEEE Trans Neural Syst Rehabil Eng. 2013 Sep;21(5):840-8. doi: 10.1109/TNSRE.2013.2264920. Epub 2013 Jun 4.
9
Empirical assessment of dynamic hamstring function during human walking.
J Biomech. 2013 Apr 26;46(7):1255-61. doi: 10.1016/j.jbiomech.2013.02.019. Epub 2013 Mar 26.

本文引用的文献

1
OpenSim: open-source software to create and analyze dynamic simulations of movement.
IEEE Trans Biomed Eng. 2007 Nov;54(11):1940-50. doi: 10.1109/TBME.2007.901024.
2
A weighted least squares method for inverse dynamic analysis.
Comput Methods Biomech Biomed Engin. 2008 Feb;11(1):3-9. doi: 10.1080/10255840701550865. Epub 2007 Oct 15.
3
Are patient-specific joint and inertial parameters necessary for accurate inverse dynamics analyses of gait?
IEEE Trans Biomed Eng. 2007 May;54(5):782-93. doi: 10.1109/TBME.2006.889187.
4
A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement.
J Biomech. 2007;40(2):356-66. doi: 10.1016/j.jbiomech.2005.12.017. Epub 2006 Mar 2.
5
Using induced accelerations to understand knee stability during gait of individuals with muscle weakness.
Gait Posture. 2006 Jun;23(4):435-40. doi: 10.1016/j.gaitpost.2005.05.007. Epub 2005 Aug 10.
6
Using computed muscle control to generate forward dynamic simulations of human walking from experimental data.
J Biomech. 2006;39(6):1107-15. doi: 10.1016/j.jbiomech.2005.02.010. Epub 2005 Jul 14.
7
Determination of patient-specific multi-joint kinematic models through two-level optimization.
J Biomech. 2005 Mar;38(3):621-6. doi: 10.1016/j.jbiomech.2004.03.031.
9
Static optimal estimation of joint accelerations for inverse dynamics problem solution.
J Biomech. 2002 Nov;35(11):1507-13. doi: 10.1016/s0021-9290(02)00176-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验