Suppr超能文献

改变方向:通过直接跟踪标记和地面反力数据进行 3D 最优控制模拟。

Change the direction: 3D optimal control simulation by directly tracking marker and ground reaction force data.

机构信息

Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.

Division Positioning and Networks, Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits IIS, Nuremberg, Germany.

出版信息

PeerJ. 2023 Feb 7;11:e14852. doi: 10.7717/peerj.14852. eCollection 2023.

Abstract

Optimal control simulations of musculoskeletal models can be used to reconstruct motions measured with optical motion capture to estimate joint and muscle kinematics and kinetics. These simulations are mutually and dynamically consistent, in contrast to traditional inverse methods. Commonly, optimal control simulations are generated by tracking generalized coordinates in combination with ground reaction forces. The generalized coordinates are estimated from marker positions using, for example, inverse kinematics. Hence, inaccuracies in the estimated coordinates are tracked in the simulation. We developed an approach to reconstruct arbitrary motions, such as change of direction motions, using optimal control simulations of 3D full-body musculoskeletal models by directly tracking marker and ground reaction force data. For evaluation, we recorded three trials each of straight running, curved running, and a v-cut for 10 participants. We reconstructed the recordings with marker tracking simulations, coordinate tracking simulations, and inverse kinematics and dynamics. First, we analyzed the convergence of the simulations and found that the wall time increased three to four times when using marker tracking compared to coordinate tracking. Then, we compared the marker trajectories, ground reaction forces, pelvis translations, joint angles, and joint moments between the three reconstruction methods. Root mean squared deviations between measured and estimated marker positions were smallest for inverse kinematics (., 7.6 ± 5.1 mm for v-cut). However, measurement noise and soft tissue artifacts are likely also tracked in inverse kinematics, meaning that this approach does not reflect a gold standard. Marker tracking simulations resulted in slightly higher root mean squared marker deviations (., 9.5 ± 6.2 mm for v-cut) than inverse kinematics. In contrast, coordinate tracking resulted in deviations that were nearly twice as high (., 16.8 ± 10.5 mm for v-cut). Joint angles from coordinate tracking followed the estimated joint angles from inverse kinematics more closely than marker tracking (., root mean squared deviation of 1.4 ± 1.8 deg . 3.5 ± 4.0 deg for v-cut). However, we did not have a gold standard measurement of the joint angles, so it is unknown if this larger deviation means the solution is less accurate. In conclusion, we showed that optimal control simulations of change of direction running motions can be created by tracking marker and ground reaction force data. Marker tracking considerably improved marker accuracy compared to coordinate tracking. Therefore, we recommend reconstructing movements by directly tracking marker data in the optimal control simulation when precise marker tracking is required.

摘要

肌肉骨骼模型的最优控制模拟可用于重建使用光学运动捕捉测量的运动,以估计关节和肌肉运动学和动力学。与传统的逆方法相反,这些模拟是相互动态一致的。通常,最优控制模拟是通过跟踪广义坐标和地面反作用力生成的。广义坐标是使用例如逆运动学从标记位置估计的。因此,在模拟中跟踪估计坐标的不准确性。我们开发了一种通过直接跟踪标记和地面反作用力数据来重建任意运动(例如,变向运动)的方法,用于 3D 全身肌肉骨骼模型的最优控制模拟。为了评估,我们记录了 10 名参与者的直跑、曲跑和 V 型切割各三次。我们使用标记跟踪模拟、坐标跟踪模拟和逆运动学和动力学对记录进行了重建。首先,我们分析了模拟的收敛性,发现与坐标跟踪相比,使用标记跟踪时,wall time 增加了三到四倍。然后,我们比较了三种重建方法之间的标记轨迹、地面反作用力、骨盆平移、关节角度和关节力矩。测量和估计标记位置之间的均方根偏差最小的是逆运动学(对于 V 型切割,为 7.6±5.1mm)。然而,测量噪声和软组织伪影也可能在逆运动学中被跟踪,这意味着该方法不反映黄金标准。标记跟踪模拟导致的标记均方根偏差略高于逆运动学(对于 V 型切割,为 9.5±6.2mm)。相比之下,坐标跟踪导致的偏差几乎高出两倍(对于 V 型切割,为 16.8±10.5mm)。坐标跟踪的关节角度比标记跟踪更接近逆运动学的估计关节角度(对于 V 型切割,为 1.4±1.8°,3.5±4.0°)。然而,我们没有关节角度的黄金标准测量,因此不知道这种更大的偏差是否意味着解决方案不够准确。总之,我们表明可以通过跟踪标记和地面反作用力数据来创建变向运行运动的最优控制模拟。与坐标跟踪相比,标记跟踪大大提高了标记的准确性。因此,当需要精确的标记跟踪时,我们建议在最优控制模拟中直接跟踪标记数据来重建运动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e20/9912948/8540ae73d10b/peerj-11-14852-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验