Mohammad Farhan, Singh Priyanka, Sharma Abhay
Institute of Genomics and Integrative Biology, Delhi University Campus, India.
BMC Syst Biol. 2009 Jan 21;3:11. doi: 10.1186/1752-0509-3-11.
Rodent kindling induced by PTZ is a widely used model of epileptogenesis and AED testing. Overlapping pathophysiological mechanisms may underlie epileptogenesis and other neuropsychiatric conditions. Besides epilepsy, AEDs are widely used in treating various neuropsychiatric disorders. Mechanisms of AEDs' long term action in these disorders are poorly understood. We describe here a Drosophila systems model of PTZ induced locomotor plasticity that is responsive to AEDs.
We empirically determined a regime in which seven days of PTZ treatment and seven days of subsequent PTZ discontinuation respectively cause a decrease and an increase in climbing speed of Drosophila adults. Concomitant treatment with NaVP and LEV, not ETH, GBP and VGB, suppressed the development of locomotor deficit at the end of chronic PTZ phase. Concomitant LEV also ameliorated locomotor alteration that develops after PTZ withdrawal. Time series of microarray expression profiles of heads of flies treated with PTZ for 12 hrs (beginning phase), two days (latent phase) and seven days (behaviorally expressive phase) showed only down-, not up-, regulation of genes; expression of 23, 2439 and 265 genes were downregulated, in that order. GO biological process enrichment analysis showed downregulation of transcription, neuron morphogenesis during differentiation, synaptic transmission, regulation of neurotransmitter levels, neurogenesis, axonogenesis, protein modification, axon guidance, actin filament organization etc. in the latent phase and of glutamate metabolism, cell communication etc. in the expressive phase. Proteomic interactome based analysis provided further directionality to these events. Pathway overrepresentation analysis showed enrichment of Wnt signaling and other associated pathways in genes downregulated by PTZ. Mining of available transcriptomic and proteomic data pertaining to established rodent models of epilepsy and human epileptic patients showed overrepresentation of epilepsy associated genes in our PTZ regulated set.
Systems biology ultimately aims at delineating and comprehending the functioning of complex biological systems in such details that predictive models of human diseases could be developed. Due to immense complexity of higher organisms, systems biology approaches are however currently focused on simpler organisms. Amenable to modeling, our model offers a unique opportunity to further dissect epileptogenesis-like plasticity and to unravel mechanisms of long-term action of AEDs relevant in neuropsychiatric disorders.
由戊四氮(PTZ)诱导的啮齿动物点燃效应是癫痫发生和抗癫痫药物(AED)测试中广泛使用的模型。重叠的病理生理机制可能是癫痫发生及其他神经精神疾病的基础。除癫痫外,AEDs还广泛用于治疗各种神经精神障碍。AEDs在这些疾病中的长期作用机制尚不清楚。我们在此描述一种对AEDs有反应的PTZ诱导的果蝇运动可塑性系统模型。
我们通过实验确定了一种方案,即7天的PTZ治疗和随后7天的PTZ停药分别导致果蝇成虫攀爬速度下降和上升。与ETH、GBP和VGB不同,同时使用NaVP和左乙拉西坦(LEV)可抑制慢性PTZ阶段末期运动缺陷的发展。同时使用LEV还可改善PTZ撤药后出现的运动改变。对接受PTZ处理12小时(起始阶段)、两天(潜伏期)和七天(行为表现阶段)的果蝇头部进行微阵列表达谱的时间序列分析表明,基因仅下调,未上调;分别有23、2439和265个基因的表达下调。基因本体(GO)生物学过程富集分析表明,在潜伏期,转录、分化过程中的神经元形态发生、突触传递、神经递质水平调节、神经发生、轴突发生、蛋白质修饰、轴突导向、肌动蛋白丝组织等下调,在表现期,谷氨酸代谢、细胞通讯等下调。基于蛋白质组相互作用组的分析为这些事件提供了进一步的方向性。通路过度表达分析表明,PTZ下调的基因中Wnt信号通路及其他相关通路富集。对已建立的癫痫啮齿动物模型和人类癫痫患者的现有转录组和蛋白质组数据进行挖掘,结果表明我们的PTZ调控组中癫痫相关基因过度表达。
系统生物学最终旨在详细描绘和理解复杂生物系统的功能,从而能够开发人类疾病的预测模型。然而,由于高等生物的巨大复杂性,系统生物学方法目前主要集中在较简单的生物体上。我们的模型易于建模,为进一步剖析癫痫样可塑性以及揭示与神经精神疾病相关的AEDs长期作用机制提供了独特的机会。