Suppr超能文献

对人类肝脏过氧化物酶体丙氨酸:乙醛酸转氨酶次要等位基因与F152I突变之间协同作用的分子洞察。

Molecular Insight into the Synergism between the Minor Allele of Human Liver Peroxisomal Alanine:Glyoxylate Aminotransferase and the F152I Mutation.

作者信息

Cellini Barbara, Montioli Riccardo, Paiardini Alessandro, Lorenzetto Antonio, Voltattorni Carla Borri

机构信息

Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università degli Studi di Verona, Strada Le Grazie, 8, 37134 Verona, Italy.

出版信息

J Biol Chem. 2009 Mar 27;284(13):8349-58. doi: 10.1074/jbc.M808965200. Epub 2009 Jan 20.

Abstract

Human liver peroxisomal alanine:glyoxylate aminotransferase (AGT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that converts glyoxylate into glycine. AGT deficiency causes primary hyperoxaluria type 1 (PH1), a rare autosomal recessive disorder, due to a marked increase in hepatic oxalate production. Normal human AGT exists as two polymorphic variants: the major (AGT-Ma) and the minor (AGT-Mi) allele. AGT-Mi causes the PH1 disease only when combined with some mutations. In this study, the molecular basis of the synergism between AGT-Mi and F152I mutation has been investigated through a detailed biochemical characterization of AGT-Mi and the Phe(152) variants combined either with the major (F152I-Ma, F152A-Ma) or the minor allele (F152I-Mi). Although these species show spectral features, kinetic parameters, and PLP binding affinity similar to those of AGT-Ma, the Phe(152) variants exhibit the following differences with respect to AGT-Ma and AGT-Mi: (i) pyridoxamine 5'-phosphate (PMP) is released during the overall transamination leading to the conversion into apoenzymes, and (ii) the PMP binding affinity is at least 200-1400-fold lower. Thus, Phe(152) is not an essential residue for transaminase activity, but plays a role in selectively stabilizing the AGT-PMP complex, by a proper orientation of Trp(108), as suggested by bioinformatic analysis. These data, together with the finding that apoF152I-Mi is the only species that at physiological temperature undergoes a time-dependent inactivation and concomitant aggregation, shed light on the molecular defects resulting from the association of the F152I mutation with AGT-Mi, and allow to speculate on the responsiveness to pyridoxine therapy of PH1 patients carrying this mutation.

摘要

人肝脏过氧化物酶体丙氨酸

乙醛酸氨基转移酶(AGT)是一种依赖于磷酸吡哆醛(PLP)的酶,可将乙醛酸转化为甘氨酸。AGT缺乏会导致1型原发性高草酸尿症(PH1),这是一种罕见的常染色体隐性疾病,原因是肝脏草酸生成显著增加。正常人AGT以两种多态变体形式存在:主要(AGT-Ma)和次要(AGT-Mi)等位基因。AGT-Mi仅在与某些突变结合时才会导致PH1疾病。在本研究中,通过对AGT-Mi以及与主要等位基因(F152I-Ma、F152A-Ma)或次要等位基因(F152I-Mi)结合的Phe(152)变体进行详细的生化特性分析,研究了AGT-Mi与F152I突变之间协同作用的分子基础。尽管这些物种显示出与AGT-Ma相似的光谱特征、动力学参数和PLP结合亲和力,但Phe(152)变体相对于AGT-Ma和AGT-Mi表现出以下差异:(i)在整体转氨作用过程中会释放磷酸吡哆胺(PMP),导致转化为脱辅基酶,以及(ii)PMP结合亲和力至少低200 - 1400倍。因此,Phe(152)不是转氨酶活性的必需残基,但如生物信息学分析所表明的,通过色氨酸(Trp(108))的适当取向,在选择性稳定AGT-PMP复合物中发挥作用。这些数据,连同脱辅基F152I-Mi是唯一在生理温度下经历时间依赖性失活和伴随聚集的物种这一发现,揭示了F152I突变与AGT-Mi关联所导致的分子缺陷,并有助于推测携带该突变的PH1患者对维生素B6治疗的反应性。

相似文献

2
Human liver peroxisomal alanine:glyoxylate aminotransferase: characterization of the two allelic forms and their pathogenic variants.
Biochim Biophys Acta. 2011 Nov;1814(11):1577-84. doi: 10.1016/j.bbapap.2010.12.005. Epub 2010 Dec 20.
3
Misfolding caused by the pathogenic mutation G47R on the minor allele of alanine:glyoxylate aminotransferase and chaperoning activity of pyridoxine.
Biochim Biophys Acta. 2015 Oct;1854(10 Pt A):1280-9. doi: 10.1016/j.bbapap.2015.07.002. Epub 2015 Jul 3.
8
Effects of alanine:glyoxylate aminotransferase variants and pyridoxine sensitivity on oxalate metabolism in a cell-based cytotoxicity assay.
Biochim Biophys Acta. 2016 Jun;1862(6):1055-62. doi: 10.1016/j.bbadis.2016.02.004. Epub 2016 Feb 6.
10
Biochemical and cellular effects of a novel missense mutation of the AGXT gene associated with Primary Hyperoxaluria Type 1.
Biochem Biophys Res Commun. 2023 Feb 19;645:118-123. doi: 10.1016/j.bbrc.2023.01.042. Epub 2023 Jan 14.

引用本文的文献

3
Effect of the allelic background on the phenotype of primary hyperoxaluria type I.
Curr Opin Nephrol Hypertens. 2025 Mar 1;34(2):177-183. doi: 10.1097/MNH.0000000000001057. Epub 2024 Dec 6.
4
A molecular journey on the pathogenesis of primary hyperoxaluria.
Curr Opin Nephrol Hypertens. 2024 Jul 1;33(4):398-404. doi: 10.1097/MNH.0000000000000987. Epub 2024 Apr 11.
6
Structural dynamics shape the fitness window of alanine:glyoxylate aminotransferase.
Protein Sci. 2022 May;31(5):e4303. doi: 10.1002/pro.4303.
8
Molecular basis of primary hyperoxaluria: clues to innovative treatments.
Urolithiasis. 2019 Feb;47(1):67-78. doi: 10.1007/s00240-018-1089-z. Epub 2018 Nov 14.

本文引用的文献

1
In vivo and in vitro examination of stability of primary hyperoxaluria-associated human alanine:glyoxylate aminotransferase.
J Biol Chem. 2008 Nov 7;283(45):30493-502. doi: 10.1074/jbc.M803525200. Epub 2008 Sep 9.
6
Implications of genotype and enzyme phenotype in pyridoxine response of patients with type I primary hyperoxaluria.
Am J Nephrol. 2005 Mar-Apr;25(2):183-8. doi: 10.1159/000085411. Epub 2005 Apr 21.
7
Pyridoxine effect in type I primary hyperoxaluria is associated with the most common mutant allele.
Kidney Int. 2005 May;67(5):1704-9. doi: 10.1111/j.1523-1755.2005.00267.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验