Cellini Barbara, Montioli Riccardo, Paiardini Alessandro, Lorenzetto Antonio, Voltattorni Carla Borri
Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università degli Studi di Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
J Biol Chem. 2009 Mar 27;284(13):8349-58. doi: 10.1074/jbc.M808965200. Epub 2009 Jan 20.
Human liver peroxisomal alanine:glyoxylate aminotransferase (AGT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that converts glyoxylate into glycine. AGT deficiency causes primary hyperoxaluria type 1 (PH1), a rare autosomal recessive disorder, due to a marked increase in hepatic oxalate production. Normal human AGT exists as two polymorphic variants: the major (AGT-Ma) and the minor (AGT-Mi) allele. AGT-Mi causes the PH1 disease only when combined with some mutations. In this study, the molecular basis of the synergism between AGT-Mi and F152I mutation has been investigated through a detailed biochemical characterization of AGT-Mi and the Phe(152) variants combined either with the major (F152I-Ma, F152A-Ma) or the minor allele (F152I-Mi). Although these species show spectral features, kinetic parameters, and PLP binding affinity similar to those of AGT-Ma, the Phe(152) variants exhibit the following differences with respect to AGT-Ma and AGT-Mi: (i) pyridoxamine 5'-phosphate (PMP) is released during the overall transamination leading to the conversion into apoenzymes, and (ii) the PMP binding affinity is at least 200-1400-fold lower. Thus, Phe(152) is not an essential residue for transaminase activity, but plays a role in selectively stabilizing the AGT-PMP complex, by a proper orientation of Trp(108), as suggested by bioinformatic analysis. These data, together with the finding that apoF152I-Mi is the only species that at physiological temperature undergoes a time-dependent inactivation and concomitant aggregation, shed light on the molecular defects resulting from the association of the F152I mutation with AGT-Mi, and allow to speculate on the responsiveness to pyridoxine therapy of PH1 patients carrying this mutation.
乙醛酸氨基转移酶(AGT)是一种依赖于磷酸吡哆醛(PLP)的酶,可将乙醛酸转化为甘氨酸。AGT缺乏会导致1型原发性高草酸尿症(PH1),这是一种罕见的常染色体隐性疾病,原因是肝脏草酸生成显著增加。正常人AGT以两种多态变体形式存在:主要(AGT-Ma)和次要(AGT-Mi)等位基因。AGT-Mi仅在与某些突变结合时才会导致PH1疾病。在本研究中,通过对AGT-Mi以及与主要等位基因(F152I-Ma、F152A-Ma)或次要等位基因(F152I-Mi)结合的Phe(152)变体进行详细的生化特性分析,研究了AGT-Mi与F152I突变之间协同作用的分子基础。尽管这些物种显示出与AGT-Ma相似的光谱特征、动力学参数和PLP结合亲和力,但Phe(152)变体相对于AGT-Ma和AGT-Mi表现出以下差异:(i)在整体转氨作用过程中会释放磷酸吡哆胺(PMP),导致转化为脱辅基酶,以及(ii)PMP结合亲和力至少低200 - 1400倍。因此,Phe(152)不是转氨酶活性的必需残基,但如生物信息学分析所表明的,通过色氨酸(Trp(108))的适当取向,在选择性稳定AGT-PMP复合物中发挥作用。这些数据,连同脱辅基F152I-Mi是唯一在生理温度下经历时间依赖性失活和伴随聚集的物种这一发现,揭示了F152I突变与AGT-Mi关联所导致的分子缺陷,并有助于推测携带该突变的PH1患者对维生素B6治疗的反应性。