Cellini Barbara, Montioli Riccardo, Voltattorni Carla Borri
Dipartimento di Scienze della Vita e della Riproduzione, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università degli Studi di Verona, Strada Le Grazie, 8 37134 Verona, Italy.
Biochim Biophys Acta. 2011 Nov;1814(11):1577-84. doi: 10.1016/j.bbapap.2010.12.005. Epub 2010 Dec 20.
The hepatic peroxisomal alanine:glyoxylate aminotransferase (AGT) is a pyridoxal 5'-phosphate (PLP)-enzyme whose deficiency is responsible for Primary Hyperoxaluria Type 1 (PH1), an autosomal recessive disorder. In the last few years the knowledge of the characteristics of AGT and the transfer of this information into some pathogenic variants have significantly contributed to the improvement of the understanding at the molecular level of the PH1 pathogenesis. In this review, the spectroscopic features, the coenzyme's binding affinity, the steady-state kinetic parameters as well as the sensitivity to thermal and chemical stress of the two allelic forms of AGT, the major (AGT-Ma) and the minor (AGT-Mi) allele, have been described. Moreover, we summarize the characterization obtained by means of biochemical and bioinformatic analyses of the following PH1-causing variants in the recombinant purified forms: G82E associated with the major allele, F152I encoded on the background of the minor allele, and the G41 mutants which co-segregate either with the major allele (G41R-Ma and G41V-Ma) or with the minor allele (G41R-Mi). The data have been correlated with previous clinical and cell biology results, which allow us to (i) highlight the functional differences between AGT-Ma and AGT-Mi, (ii) identify the structural and functional molecular defects of the pathogenic variants, (iii) improve the correlation between the genotype and the enzymatic phenotype, (iv) foresee or understand the molecular basis of the responsiveness to pyridoxine treatment of patients bearing these mutations, and (v) pave the way for new treatment strategies. This article is part of a Special Issue entitled: Pyridoxal Phospate Enzymology.
乙醛酸转氨酶(AGT)是一种依赖磷酸吡哆醛(PLP)的酶,其缺乏会导致1型原发性高草酸尿症(PH1),这是一种常染色体隐性疾病。在过去几年中,对AGT特性的了解以及将这些信息转化为一些致病变体,极大地促进了我们在分子水平上对PH1发病机制的理解。在这篇综述中,我们描述了AGT的两种等位基因形式,即主要等位基因(AGT-Ma)和次要等位基因(AGT-Mi)的光谱特征、辅酶结合亲和力、稳态动力学参数以及对热和化学应激的敏感性。此外,我们总结了通过生化和生物信息学分析获得的以下重组纯化形式的PH1致病变体的特征:与主要等位基因相关的G82E、次要等位基因背景下编码的F152I,以及与主要等位基因(G41R-Ma和G41V-Ma)或次要等位基因(G41R-Mi)共分离的G41突变体。这些数据与先前的临床和细胞生物学结果相关联,这使我们能够:(i)突出AGT-Ma和AGT-Mi之间的功能差异;(ii)识别致病变体的结构和功能分子缺陷;(iii)改善基因型与酶表型之间的相关性;(iv)预测或理解携带这些突变的患者对吡哆醇治疗反应的分子基础;(v)为新的治疗策略铺平道路。本文是名为《磷酸吡哆醛酶学》的特刊的一部分。