Dindo Mirco, Montioli Riccardo, Busato Mirko, Giorgetti Alejandro, Cellini Barbara, Borri Voltattorni Carla
Department of Neurosciences, Biomedicine and Movement Sciences (Section of Biological Chemistry), University of Verona, Verona, Italy.
Department of Biotechnology, University of Verona, Verona, Italy.
Biochimie. 2016 Dec;131:137-148. doi: 10.1016/j.biochi.2016.10.001. Epub 2016 Oct 5.
In this work the dimerization process of the minor allelic form of human alanine glyoxylate aminotransferase, a pyridoxal 5'-phosphate enzyme, was investigated. Bioinformatic analyses followed by site-directed mutagenesis, size exclusion chromatography and catalytic activity experiments allowed us to identify Arg118, Phe238 and Phe240 as interfacial residues not essential for transaminase activity but important for dimer-monomer dissociation. The apo and the holo forms of the triple mutant R118A-Mi/F238S-Mi/F240S-Mi display a dimer-monomer equilibrium dissociation constant value at least ~260- and 31-fold larger, respectively, than the corresponding ones of AGT-Mi. In the presence of PLP, the apomonomer of the triple mutant undergoes a biphasic process: the fast phase represents the formation of an inactive PLP-bound monomer, while the slow phase depicts the monomer-monomer association that parallels the regain of transaminase activity. The latter events occur with a rate constant of ~0.02 μMmin. In the absence of PLP, the apomonomer is also able to dimerize but with a rate constant value ~2700-fold lower. Thereafter, the possible interference with the dimerization process of AGT-Mi exerted by the mutated residues in the I244T-Mi and F152I-Mi variants associated with Primary Hyperoxaluria type 1 was investigated by molecular dynamics simulations. On the basis of the present and previous studies, a model for the dimerization process of AGT-Mi, I244T-Mi and F152I-Mi, which outlines the structural defects responsible for the complete or partial mistargeting of the pathogenic variants, was proposed and discussed.
在这项工作中,对人丙氨酸乙醛酸转氨酶(一种磷酸吡哆醛酶)的次要等位基因形式的二聚化过程进行了研究。通过生物信息学分析,随后进行定点诱变、尺寸排阻色谱和催化活性实验,我们确定精氨酸118、苯丙氨酸238和苯丙氨酸240为界面残基,它们对转氨酶活性不是必需的,但对二聚体 - 单体解离很重要。三重突变体R118A - Mi/F238S - Mi/F240S - Mi的脱辅基形式和全酶形式分别显示出二聚体 - 单体平衡解离常数,其值分别比AGT - Mi的相应值大至少约260倍和31倍。在磷酸吡哆醛(PLP)存在下,三重突变体的脱辅基单体经历双相过程:快速相代表形成无活性的PLP结合单体,而缓慢相描述与转氨酶活性恢复平行的单体 - 单体缔合。后一事件以约0.02 μM/min的速率常数发生。在没有PLP的情况下,脱辅基单体也能够二聚化,但速率常数的值低约2700倍。此后,通过分子动力学模拟研究了与1型原发性高草酸尿症相关的I244T - Mi和F152I - Mi变体中的突变残基对AGT - Mi二聚化过程可能产生的干扰。基于目前和先前的研究,提出并讨论了AGT - Mi、I244T - Mi和F152I - Mi二聚化过程的模型,该模型概述了导致致病变体完全或部分错误靶向的结构缺陷。