Suppr超能文献

纵向数据建模,II:标准回归模型及其扩展

Modeling longitudinal data, II: standard regression models and extensions.

作者信息

Ravani Pietro, Barrett Brendan, Parfrey Patrick

机构信息

Divisione di Neprologia, Azienda Instituti, Ospitalieri di Cremona, Cremona, Italy.

出版信息

Methods Mol Biol. 2009;473:61-94. doi: 10.1007/978-1-59745-385-1_4.

Abstract

In longitudinal studies, the relationship between exposure and disease can be measured once or multiple times while participants are monitored over time. Traditional regression techniques are used to model outcome data when each epidemiological unit is observed once. These models include generalized linear models for quantitative continuous, discrete, or qualitative outcome responses and models for time-to-event data. When data come from the same subjects or group of subjects, observations are not independent and the underlying correlation needs to be addressed in the analysis. Under these circumstances, extended models are necessary to handle complexities related to clustered data and repeated measurements of time-varying predictors or outcomes.

摘要

在纵向研究中,在对参与者进行长期监测时,可以对暴露与疾病之间的关系进行一次或多次测量。当每个流行病学单位仅被观察一次时,传统回归技术用于对结果数据进行建模。这些模型包括用于定量连续、离散或定性结果反应的广义线性模型以及用于事件发生时间数据的模型。当数据来自相同的个体或个体组时,观察结果并非独立,在分析中需要考虑潜在的相关性。在这种情况下,需要扩展模型来处理与聚类数据以及随时间变化的预测因素或结果的重复测量相关的复杂性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验