Ravani Pietro, Barrett Brendan, Parfrey Patrick
Divisione di Neprologia, Azienda Instituti, Ospitalieri di Cremona, Cremona, Italy.
Methods Mol Biol. 2009;473:61-94. doi: 10.1007/978-1-59745-385-1_4.
In longitudinal studies, the relationship between exposure and disease can be measured once or multiple times while participants are monitored over time. Traditional regression techniques are used to model outcome data when each epidemiological unit is observed once. These models include generalized linear models for quantitative continuous, discrete, or qualitative outcome responses and models for time-to-event data. When data come from the same subjects or group of subjects, observations are not independent and the underlying correlation needs to be addressed in the analysis. Under these circumstances, extended models are necessary to handle complexities related to clustered data and repeated measurements of time-varying predictors or outcomes.
在纵向研究中,在对参与者进行长期监测时,可以对暴露与疾病之间的关系进行一次或多次测量。当每个流行病学单位仅被观察一次时,传统回归技术用于对结果数据进行建模。这些模型包括用于定量连续、离散或定性结果反应的广义线性模型以及用于事件发生时间数据的模型。当数据来自相同的个体或个体组时,观察结果并非独立,在分析中需要考虑潜在的相关性。在这种情况下,需要扩展模型来处理与聚类数据以及随时间变化的预测因素或结果的重复测量相关的复杂性。