在具身认知和心身医学的背景下,随机森林回归可能成为老年膝骨关节炎的最佳回归模型。
Random Forest Regression May Become the Optimal Regression Model for Osteoarthritis of the Knee in Elderly, in the Context of Embodied Cognition and Psychosomatic Medicine.
作者信息
Ma Guangyuan, Chen Junjie, Li Jingchi, Shi Hui, Chen Yi
机构信息
School of Humanities and Management, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.
Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, People's Republic of China.
出版信息
J Multidiscip Healthc. 2025 Jul 26;18:4219-4232. doi: 10.2147/JMDH.S519195. eCollection 2025.
BACKGROUND
In the context of embodied cognition and psychosomatic medicine, predicting post-treatment depression in elderly patients with knee osteoarthritis (KOA) is critical for improving psychological outcomes. While regression analysis is widely used in longitudinal medical studies, the optimal model for forecasting complex psychosomatic changes remains unclear.
OBJECTIVE
This study compared the predictive performance of five regression models in estimating post-treatment depression (D2) among elderly KOA patients, considering variables such as gender, age, pain, anxiety, sleep quality, and baseline depression.
METHODS
A total of 106 elderly KOA patients from the Affiliated Hospital of Southwest Medical University were assessed before and after treatment (September 2023 to February 2024). Psychological and physical metrics included the Visual Analog Scale (VAS), Beck Anxiety Inventory (BAI), Geriatric Depression Scale (GDS), and Pittsburgh Sleep Quality Index (PSQI). Five regression techniques-non-negative linear regression, stochastic gradient descent (SGD), AdaBoost, Random Forest, and Gradient Boosting Decision Trees (GBDT)-were evaluated using R², mean squared error (MSE), and mean absolute error (MAE). Bootstrap resampling and the Kruskal-Wallis test were applied to ensure robustness and compare model coefficients.
RESULTS
Random Forest regression achieved the highest performance (R² = 0.687, MSE = 0.589, MAE = 0.785), followed by AdaBoost. Post-treatment anxiety and sleep quality emerged as the strongest predictors. All models showed acceptable multicollinearity (VIF < 10), and Kruskal-Wallis results suggested no significant differences in coefficients across models.
CONCLUSION
Random forest regression outperformed other models in predicting depression after KOA treatment, demonstrating its strength in capturing complex nonlinear relationships. However, the study's relatively small sample size and predominantly female cohort may limit generalizability. Future research with larger and more diverse samples is recommended to validate these findings.
背景
在具身认知和身心医学的背景下,预测老年膝骨关节炎(KOA)患者治疗后的抑郁情况对于改善心理结局至关重要。虽然回归分析在纵向医学研究中被广泛使用,但用于预测复杂身心变化的最佳模型仍不明确。
目的
本研究比较了五种回归模型在估计老年KOA患者治疗后抑郁(D2)方面的预测性能,考虑了性别、年龄、疼痛、焦虑、睡眠质量和基线抑郁等变量。
方法
对西南医科大学附属医院的106例老年KOA患者在治疗前后(2023年9月至2024年2月)进行了评估。心理和身体指标包括视觉模拟量表(VAS)、贝克焦虑量表(BAI)、老年抑郁量表(GDS)和匹兹堡睡眠质量指数(PSQI)。使用决定系数(R²)、均方误差(MSE)和平均绝对误差(MAE)对五种回归技术——非负线性回归、随机梯度下降(SGD)、自适应增强(AdaBoost)、随机森林和梯度提升决策树(GBDT)进行了评估。应用自助重采样和克鲁斯卡尔-沃利斯检验以确保稳健性并比较模型系数。
结果
随机森林回归表现最佳(R² = 0.687,MSE = 0.589,MAE = 0.785),其次是自适应增强。治疗后的焦虑和睡眠质量是最强的预测因素。所有模型均显示出可接受的多重共线性(方差膨胀因子<10),克鲁斯卡尔-沃利斯检验结果表明各模型系数无显著差异。
结论
随机森林回归在预测KOA治疗后的抑郁方面优于其他模型,证明了其在捕捉复杂非线性关系方面的优势。然而,该研究相对较小的样本量和以女性为主的队列可能会限制其普遍性。建议未来进行更大规模和更多样化样本的研究以验证这些发现。
相似文献
Cochrane Database Syst Rev. 2018-4-17
Front Public Health. 2025-7-16
Cochrane Database Syst Rev. 2016-3-31
Cochrane Database Syst Rev. 2020-7-1
Cochrane Database Syst Rev. 2024-9-12
Psychopharmacol Bull. 2024-7-8
本文引用的文献
BMC Musculoskelet Disord. 2023-11-10
BMC Musculoskelet Disord. 2022-3-5
Int J Environ Res Public Health. 2021-8-12
Psychiatriki. 2021-7-10
Med Humanit. 2019-6