Groves Adrian R, Chappell Michael A, Woolrich Mark W
FMRIB Centre, Department of Clinical Neurology, John Radcliffe Hospital, Oxford, UK.
Neuroimage. 2009 Apr 15;45(3):795-809. doi: 10.1016/j.neuroimage.2008.12.027. Epub 2008 Dec 30.
When modelling FMRI and other MRI time-series data, a Bayesian approach based on adaptive spatial smoothness priors is a compelling alternative to using a standard generalized linear model (GLM) on presmoothed data. Another benefit of the Bayesian approach is that biophysical prior information can be incorporated in a principled manner; however, this requirement for a fixed non-spatial prior on a parameter would normally preclude using spatial regularization on that same parameter. We have developed a Gaussian-process-based prior to apply adaptive spatial regularization while still ensuring that the fixed biophysical prior is correctly applied on each voxel. A parameterized covariance matrix provides separate control over the variance (the diagonal elements) and the between-voxel correlation (due to off-diagonal elements). Analysis proceeds using evidence optimization (EO), with variational Bayes (VB) updates used for some parameters. The method can also be applied to non-linear forward models by using a linear Taylor expansion centred on the latest parameter estimates. Applying the method to FMRI with a constrained haemodynamic response function (HRF) shape model shows improved fits in simulations, compared to using either the non-spatial or spatial-smoothness prior alone. We also analyse multi-inversion arterial spin labelling data using a non-linear perfusion model to estimate cerebral blood flow and bolus arrival time. By combining both types of prior information, this new prior performs consistently well across a wider range of situations than either prior alone, and provides better estimates when both types of prior information are relevant.
在对功能磁共振成像(fMRI)和其他磁共振成像时间序列数据进行建模时,基于自适应空间平滑先验的贝叶斯方法是在预平滑数据上使用标准广义线性模型(GLM)的一种有吸引力的替代方法。贝叶斯方法的另一个优点是可以以有原则的方式纳入生物物理先验信息;然而,对参数的固定非空间先验的这种要求通常会排除对同一参数使用空间正则化。我们开发了一种基于高斯过程的先验,以应用自适应空间正则化,同时仍确保在每个体素上正确应用固定的生物物理先验。参数化协方差矩阵分别控制方差(对角元素)和体素间相关性(由于非对角元素)。使用证据优化(EO)进行分析,对一些参数使用变分贝叶斯(VB)更新。该方法还可以通过使用以最新参数估计为中心的线性泰勒展开应用于非线性正向模型。与单独使用非空间或空间平滑先验相比,将该方法应用于具有受限血流动力学响应函数(HRF)形状模型的fMRI时,在模拟中显示出更好的拟合效果。我们还使用非线性灌注模型分析多反转动脉自旋标记数据,以估计脑血流量和团注到达时间。通过结合这两种先验信息,这种新先验在比单独使用任何一种先验更广泛的情况下都能持续良好地执行,并且当两种先验信息都相关时能提供更好的估计。