Woolrich Mark W, Behrens Timothy E J, Smith Stephen M
Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK.
Neuroimage. 2004 Apr;21(4):1748-61. doi: 10.1016/j.neuroimage.2003.12.024.
FMRI modelling requires flexible haemodynamic response function (HRF) modelling, with the HRF being allowed to vary spatially and between subjects. To achieve this flexibility, voxelwise parameterised HRFs have been proposed; however, inference on such models is very slow. An alternative approach is to use basis functions allowing inference to proceed in the more manageable General Linear Model (GLM) framework. However, a large amount of the subspace spanned by the basis functions produces nonsensical HRF shapes. In this work we propose a technique for choosing a basis set, and then the means to constrain the subspace spanned by the basis set to only include sensible HRF shapes. Penny et al. showed how Variational Bayes can be used to infer on the GLM for FMRI. Here we extend the work of Penny et al. to give inference on the GLM with constrained HRF basis functions and with spatial Markov Random Fields on the autoregressive noise parameters. Constraining the subspace spanned by the basis set allows for far superior separation of activating voxels from nonactivating voxels in FMRI data. We use spatial mixture modelling to produce final probabilities of activation and demonstrate increased sensitivity on an FMRI dataset.
功能磁共振成像(fMRI)建模需要灵活的血流动力学响应函数(HRF)建模,允许HRF在空间上以及不同个体之间有所变化。为实现这种灵活性,已有人提出体素级参数化的HRF;然而,对此类模型的推断非常缓慢。另一种方法是使用基函数,使推断能够在更易于处理的通用线性模型(GLM)框架中进行。然而,由基函数所跨越的大量子空间会产生无意义的HRF形状。在这项工作中,我们提出了一种选择基集的技术,以及将基集所跨越的子空间约束为仅包含合理HRF形状的方法。彭妮等人展示了变分贝叶斯如何用于fMRI的GLM推断。在此,我们扩展彭妮等人的工作,以对具有受限HRF基函数且在自回归噪声参数上具有空间马尔可夫随机场的GLM进行推断。对基集所跨越的子空间进行约束能够在fMRI数据中实现激活体素与非激活体素的更优分离。我们使用空间混合建模来生成激活的最终概率,并在一个fMRI数据集上展示了更高的灵敏度。