Zanos Theodoros P, Hampson Robert E, Deadwyler Sam A, Berger Theodore W, Marmarelis Vasilis Z
Biomedical Engineering Department, BMESERC, BMSR, University of Southern California, Los Angeles, CA 90089, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5522-5. doi: 10.1109/IEMBS.2008.4650465.
Implementation of neuroprosthetic devices requires a reliable and accurate quantitative representation of the input-output transformations performed by the involved neuronal populations. Nonparametric, data driven models with predictive capabilities are excellent candidates for these purposes. When modeling input-output relations in multi-input neuronal systems, it is important to select the subset of inputs that are functionally and causally related to the output. Inputs that do not convey information about the actual transformation not only increase the computational burden but also affect the generalization of the model. Moreover, a reliable functional connectivity measure can provide patterns of information flow that can be linked to physiological and anatomical properties of the system. We propose a method based on the Volterra modeling approach that selects distinct subsets of inputs for each output based on the prediction of the respective models and its statistical evaluation. The algorithm builds successive models with increasing number of inputs and examines whether the inclusion of additional inputs benefits the predictive accuracy of the overall model. It also explores possible second-order (inter-modulatory) interactions among the inputs. The method was applied to multi-unit recordings from the CA3 (input) and CA1 (output) regions of the hippocampus in behaving rats, in order to reveal spatiotemporal connectivity maps of the input-output transformation taking place in the CA3-CA1 synapse.
神经假体装置的实现需要对相关神经元群体执行的输入-输出转换进行可靠且准确的定量表征。具有预测能力的非参数数据驱动模型是实现这些目标的理想选择。在对多输入神经元系统中的输入-输出关系进行建模时,选择与输出在功能和因果关系上相关的输入子集非常重要。不传达有关实际转换信息的输入不仅会增加计算负担,还会影响模型的泛化能力。此外,可靠的功能连接性度量可以提供与系统的生理和解剖特性相关的信息流模式。我们提出了一种基于沃尔泰拉建模方法的方法,该方法根据各个模型的预测及其统计评估为每个输出选择不同的输入子集。该算法构建输入数量不断增加的连续模型,并检查额外输入的纳入是否有利于整体模型的预测准确性。它还探索了输入之间可能的二阶(互调)相互作用。该方法应用于行为大鼠海马体CA3(输入)和CA1(输出)区域的多单元记录,以揭示CA3-CA1突触中发生的输入-输出转换的时空连接图谱。