Zanos Theodoros P, Hampson Robert E, Deadwyler Samuel E, Berger Theodore W, Marmarelis Vasilis Z
Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, DRB 367, Los Angeles, CA 90089-1111, USA.
Ann Biomed Eng. 2009 Aug;37(8):1668-82. doi: 10.1007/s10439-009-9716-z. Epub 2009 Jun 5.
This paper presents a pilot application of the Boolean-Volterra modeling methodology presented in the companion paper (Part I) that is suitable for the analysis of systems with point-process inputs and outputs (e.g., recordings of the activity of neuronal ensembles). This application seeks to discover the causal links between two neuronal ensembles in the hippocampus of a behaving rat. The experimental data come from multi-unit recordings in the CA3 and CA1 regions of the hippocampus in the form of sequences of action potentials-treated mathematically as point-processes and computationally as spike-trains-that are collected in vivo during two behavioral tasks. The modeling objective is to identify and quantify the causal links among the neurons generating the recorded activity, using Boolean-Volterra models estimated directly from the data according to the methodological framework presented in the companion paper. The obtained models demonstrate the feasibility of the proposed approach using short data-records and provide some insights into the functional properties of the system (e.g., regarding the presence of rhythmic characteristics in the neuronal dynamics of these ensembles), making the proposed methodology an attractive tool for the analysis and modeling of multi-unit recordings from neuronal systems in a practical context.
本文展示了在配套论文(第一部分)中提出的布尔 - 沃尔泰拉建模方法的初步应用,该方法适用于分析具有点过程输入和输出的系统(例如,神经元群体活动的记录)。此应用旨在发现行为大鼠海马体中两个神经元群体之间的因果联系。实验数据来自海马体CA3和CA1区域的多单元记录,以动作电位序列的形式呈现——在数学上作为点过程处理,在计算上作为脉冲序列处理——这些数据是在两个行为任务期间于体内收集的。建模目标是使用根据配套论文中提出的方法框架直接从数据估计的布尔 - 沃尔泰拉模型,识别和量化产生记录活动的神经元之间的因果联系。所获得的模型证明了使用短数据记录的提议方法的可行性,并为系统的功能特性提供了一些见解(例如,关于这些群体神经元动力学中节律特征的存在),使得所提议的方法成为在实际环境中分析和建模神经元系统多单元记录的有吸引力的工具。