Suppr超能文献

具有点过程输入和输出的神经系统的布尔建模。第二部分:应用于大鼠海马体。

Boolean modeling of neural systems with point-process inputs and outputs. Part II: Application to the rat hippocampus.

作者信息

Zanos Theodoros P, Hampson Robert E, Deadwyler Samuel E, Berger Theodore W, Marmarelis Vasilis Z

机构信息

Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, DRB 367, Los Angeles, CA 90089-1111, USA.

出版信息

Ann Biomed Eng. 2009 Aug;37(8):1668-82. doi: 10.1007/s10439-009-9716-z. Epub 2009 Jun 5.

Abstract

This paper presents a pilot application of the Boolean-Volterra modeling methodology presented in the companion paper (Part I) that is suitable for the analysis of systems with point-process inputs and outputs (e.g., recordings of the activity of neuronal ensembles). This application seeks to discover the causal links between two neuronal ensembles in the hippocampus of a behaving rat. The experimental data come from multi-unit recordings in the CA3 and CA1 regions of the hippocampus in the form of sequences of action potentials-treated mathematically as point-processes and computationally as spike-trains-that are collected in vivo during two behavioral tasks. The modeling objective is to identify and quantify the causal links among the neurons generating the recorded activity, using Boolean-Volterra models estimated directly from the data according to the methodological framework presented in the companion paper. The obtained models demonstrate the feasibility of the proposed approach using short data-records and provide some insights into the functional properties of the system (e.g., regarding the presence of rhythmic characteristics in the neuronal dynamics of these ensembles), making the proposed methodology an attractive tool for the analysis and modeling of multi-unit recordings from neuronal systems in a practical context.

摘要

本文展示了在配套论文(第一部分)中提出的布尔 - 沃尔泰拉建模方法的初步应用,该方法适用于分析具有点过程输入和输出的系统(例如,神经元群体活动的记录)。此应用旨在发现行为大鼠海马体中两个神经元群体之间的因果联系。实验数据来自海马体CA3和CA1区域的多单元记录,以动作电位序列的形式呈现——在数学上作为点过程处理,在计算上作为脉冲序列处理——这些数据是在两个行为任务期间于体内收集的。建模目标是使用根据配套论文中提出的方法框架直接从数据估计的布尔 - 沃尔泰拉模型,识别和量化产生记录活动的神经元之间的因果联系。所获得的模型证明了使用短数据记录的提议方法的可行性,并为系统的功能特性提供了一些见解(例如,关于这些群体神经元动力学中节律特征的存在),使得所提议的方法成为在实际环境中分析和建模神经元系统多单元记录的有吸引力的工具。

相似文献

1
Boolean modeling of neural systems with point-process inputs and outputs. Part II: Application to the rat hippocampus.
Ann Biomed Eng. 2009 Aug;37(8):1668-82. doi: 10.1007/s10439-009-9716-z. Epub 2009 Jun 5.
2
Nonlinear modeling of causal interrelationships in neuronal ensembles.
IEEE Trans Neural Syst Rehabil Eng. 2008 Aug;16(4):336-52. doi: 10.1109/TNSRE.2008.926716.
3
Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):1053-66. doi: 10.1109/TBME.2007.891948.
4
System identification of point-process neural systems using probability based Volterra kernels.
J Neurosci Methods. 2015 Jan 30;240:179-92. doi: 10.1016/j.jneumeth.2014.11.013. Epub 2014 Dec 3.
5
Boolean modeling of neural systems with point-process inputs and outputs.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2114-7. doi: 10.1109/IEMBS.2006.260584.
6
Boolean modeling of neural systems with point-process inputs and outputs. Part I: theory and simulations.
Ann Biomed Eng. 2009 Aug;37(8):1654-67. doi: 10.1007/s10439-009-9736-8. Epub 2009 Jun 11.
7
Functional connectivity through nonlinear modeling: an application to the rat hippocampus.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5522-5. doi: 10.1109/IEMBS.2008.4650465.
8
General methodology for nonlinear modeling of neural systems with Poisson point-process inputs.
Math Biosci. 2005 Jul;196(1):1-13. doi: 10.1016/j.mbs.2005.04.002.
9
Nonlinear modeling of dynamic interactions within neuronal ensembles using Principal Dynamic Modes.
J Comput Neurosci. 2013 Feb;34(1):73-87. doi: 10.1007/s10827-012-0407-7. Epub 2012 Jul 20.
10
Design of optimal stimulation patterns for neuronal ensembles based on Volterra-type hierarchical modeling.
J Neural Eng. 2012 Dec;9(6):066003. doi: 10.1088/1741-2560/9/6/066003. Epub 2012 Oct 17.

引用本文的文献

1
Recording and Decoding of Vagal Neural Signals Related to Changes in Physiological Parameters and Biomarkers of Disease.
Cold Spring Harb Perspect Med. 2019 Dec 2;9(12):a034157. doi: 10.1101/cshperspect.a034157.
2
On parsing the neural code in the prefrontal cortex of primates using principal dynamic modes.
J Comput Neurosci. 2014 Jun;36(3):321-37. doi: 10.1007/s10827-013-0475-3. Epub 2013 Aug 9.
3
Nonlinear modeling of dynamic interactions within neuronal ensembles using Principal Dynamic Modes.
J Comput Neurosci. 2013 Feb;34(1):73-87. doi: 10.1007/s10827-012-0407-7. Epub 2012 Jul 20.
4
Closing the loop for memory prosthesis: detecting the role of hippocampal neural ensembles using nonlinear models.
IEEE Trans Neural Syst Rehabil Eng. 2012 Jul;20(4):510-25. doi: 10.1109/TNSRE.2012.2190942. Epub 2012 Apr 6.
5
A nonlinear model for hippocampal cognitive prosthesis: memory facilitation by hippocampal ensemble stimulation.
IEEE Trans Neural Syst Rehabil Eng. 2012 Mar;20(2):184-97. doi: 10.1109/TNSRE.2012.2189163.

本文引用的文献

1
Nonlinear modeling of causal interrelationships in neuronal ensembles.
IEEE Trans Neural Syst Rehabil Eng. 2008 Aug;16(4):336-52. doi: 10.1109/TNSRE.2008.926716.
3
A multi-input modeling approach to quantify hippocampal nonlinear dynamic transformations.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:4967-70. doi: 10.1109/IEMBS.2006.260575.
4
Hippocampal theta sequences.
Hippocampus. 2007;17(11):1093-9. doi: 10.1002/hipo.20345.
5
Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):1053-66. doi: 10.1109/TBME.2007.891948.
6
Network and intrinsic cellular mechanisms underlying theta phase precession of hippocampal neurons.
Trends Neurosci. 2007 Jul;30(7):325-33. doi: 10.1016/j.tins.2007.05.002. Epub 2007 May 29.
7
Nonlinear dynamic model of CA1 short-term plasticity using random impulse train stimulation.
Ann Biomed Eng. 2007 May;35(5):847-57. doi: 10.1007/s10439-007-9253-6. Epub 2007 Mar 23.
8
Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice.
J Neurosci. 2006 Jan 25;26(4):1077-87. doi: 10.1523/JNEUROSCI.2834-05.2006.
9
Place cells, spatial maps and the population code for memory.
Curr Opin Neurobiol. 2005 Dec;15(6):738-46. doi: 10.1016/j.conb.2005.10.002. Epub 2005 Nov 2.
10
Restoring lost cognitive function.
IEEE Eng Med Biol Mag. 2005 Sep-Oct;24(5):30-44. doi: 10.1109/memb.2005.1511498.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验