Zanos Theodoros P, Courellis Spiros H, Hampson Robert E, Deadwyler Sam A, Marmarelis Vasilis Z, Berger Theodore W
Dept. of Biomed. Eng., Univ. of Southern California, Los Angeles, CA 90089, USA.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:4967-70. doi: 10.1109/IEMBS.2006.260575.
A multi-input modeling approach is introduced to quantify hippocampal neural dynamics. It is based on the Volterra modeling approach extended to multiple inputs. The computed Volterra kernels allow quantitative description of hippocampal transformations and define a predictive model that can produce responses to arbitrary input patterns. Electrophysiological data from several CA3 and CA1 cells in behaving rats were recorded simultaneously using an array of penetrating electrodes. This activity was used to compute kernels up to third order for single and multiple input cases. Representative sets of kernels illustrate the variability of the dynamics of the CA3-CA1 transformations. Our model's predictive accuracy was evaluated using ROC curves.
引入了一种多输入建模方法来量化海马体神经动力学。它基于扩展到多个输入的沃尔泰拉建模方法。计算出的沃尔泰拉核允许对海马体转换进行定量描述,并定义一个可以对任意输入模式产生响应的预测模型。使用一组穿透性电极同时记录了行为大鼠中几个CA3和CA1细胞的电生理数据。该活动用于计算单输入和多输入情况下高达三阶的核。代表性的核集说明了CA3-CA1转换动力学的变异性。我们使用ROC曲线评估了模型的预测准确性。