Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut 06030, USA.
J Biomed Mater Res A. 2010 Jan;92(1):114-25. doi: 10.1002/jbm.a.32334.
The long-term goal of this work is to develop biomimetic polymer-based systems for bone regeneration that both allow for neutral pH degradation products and have the ability to nucleate bonelike apatite. In this study, the etheric biodegradable polyphosphazene, poly[(50%ethyl glycinato)(50%methoxyethoxyethoxy)phosphazene] (PNEG(50)MEEP(50)) was blended with poly(lactide-co-glycolide) PLAGA and studied their ability to produce high-strength degradable biomaterials with bioactivity. Accordingly, two blends with weight ratios of PNEG(50)MEEP(50) to PLAGA 25:75 (BLEND25) and 50:50 (BLEND50) were fabricated using a mutual solvent approach. Increases in PNEG(50)MEEP(50) content in the blend system resulted in decreased elastic modulus of 779 MPa when compared with 1684 MPa (PLAGA) as well as tensile strength 7.9 MPa when compared with 25.7 MPa (PLAGA). However, the higher PNEG(50)MEEP(50) content in the blend system resulted in higher Ca/P atomic ratio of the apatite layer 1.35 (BLEND50) when compared with 0.69 (BLEND25) indicating improved biomimicry. Furthermore, these blends supported primary rat osteoblast adhesion and proliferation with an enhanced phenotypic expression when compared with PLAGA. These findings establish the suitability of PNEG(50)MEEP(50)-PLAGA biodegradable blends as promising bioactive materials for orthopedic applications.
这项工作的长期目标是开发用于骨再生的仿生聚合物基系统,这些系统既允许中性 pH 降解产物,又具有成核类似骨的磷灰石的能力。在这项研究中,醚可生物降解聚膦嗪,聚(50%乙基甘氨酸酯)(50%甲氧基乙氧基乙氧基)膦嗪与聚(乳酸-共-乙醇酸)PLAGA 共混,并研究了它们生产具有生物活性的高强度可降解生物材料的能力。因此,使用互溶剂法制备了两种重量比为 PNEG(50)MEEP(50)与 PLAGA 的共混物 25:75(BLEND25)和 50:50(BLEND50)。与 1684 MPa(PLAGA)相比,共混物系统中 PNEG(50)MEEP(50)含量的增加导致弹性模量从 779 MPa 降低,与 25.7 MPa(PLAGA)相比,拉伸强度从 7.9 MPa 降低。然而,共混物系统中较高的 PNEG(50)MEEP(50)含量导致磷灰石层的 Ca/P 原子比从 0.69(BLEND25)增加到 1.35(BLEND50),表明仿生性能得到改善。此外,与 PLAGA 相比,这些共混物支持原代大鼠成骨细胞黏附和增殖,并增强了表型表达。这些发现确立了 PNEG(50)MEEP(50)-PLAGA 可生物降解共混物作为有前途的骨科应用生物活性材料的适用性。