Bigelow Jamie L, Dunson David B
Institute of Statistics and Decision Sciences, Duke University, Durham, North Carolina 27708, USA.
Biometrics. 2007 Sep;63(3):724-32. doi: 10.1111/j.1541-0420.2007.00761.x. Epub 2007 Apr 2.
This article considers methodology for hierarchical functional data analysis, motivated by studies of reproductive hormone profiles in the menstrual cycle. Current methods standardize the cycle lengths and ignore the timing of ovulation within the cycle, both of which are biologically informative. Methods are needed that avoid standardization, while flexibly incorporating information on covariates and the timing of reference events, such as ovulation and onset of menses. In addition, it is necessary to account for within-woman dependency when data are collected for multiple cycles. We propose an approach based on a hierarchical generalization of Bayesian multivariate adaptive regression splines. Our formulation allows for an unknown set of basis functions characterizing the population-averaged and woman-specific trajectories in relation to covariates. A reversible jump Markov chain Monte Carlo algorithm is developed for posterior computation. Applying the methods to data from the North Carolina Early Pregnancy Study, we investigate differences in urinary progesterone profiles between conception and nonconception cycles.
本文考虑了分层功能数据分析的方法,其灵感来源于对月经周期中生殖激素谱的研究。当前的方法对周期长度进行标准化,并忽略周期内排卵的时间,而这两者在生物学上都具有信息价值。需要一些方法来避免标准化,同时灵活地纳入协变量信息以及参考事件(如排卵和月经初潮)的时间信息。此外,当针对多个周期收集数据时,有必要考虑女性内部的依赖性。我们提出了一种基于贝叶斯多元自适应回归样条分层推广的方法。我们的公式允许使用一组未知的基函数来表征与协变量相关的总体平均轨迹和女性特定轨迹。开发了一种可逆跳跃马尔可夫链蒙特卡罗算法用于后验计算。将这些方法应用于北卡罗来纳州早期妊娠研究的数据,我们研究了受孕周期和未受孕周期之间尿孕酮谱的差异。