Suppr超能文献

网络荟萃分析中多治疗比较的非参数贝叶斯方法及其在抗抑郁药比较中的应用

Non-parametric Bayesian approach to multiple treatment comparisons in network meta-analysis with application to comparisons of anti-depressants.

作者信息

Barrientos Andrés F, Page Garritt L, Lin Lifeng

机构信息

Department of Statistics, Florida State University, Tallahassee, FL 32306, USA.

Department of Statistics, Brigham Young University, Provo, UT 84602, USA.

出版信息

J R Stat Soc Ser C Appl Stat. 2024 Sep 2;73(5):1333-1354. doi: 10.1093/jrsssc/qlae038. eCollection 2024 Nov.

Abstract

Network meta-analysis is a powerful tool to synthesize evidence from independent studies and compare multiple treatments simultaneously. A critical task of performing a network meta-analysis is to offer ranks of all available treatment options for a specific disease outcome. Frequently, the estimated treatment rankings are accompanied by a large amount of uncertainty, suffer from multiplicity issues, and rarely permit possible ties of treatments with similar performance. These issues make interpreting rankings problematic as they are often treated as absolute metrics. To address these shortcomings, we formulate a ranking strategy that adapts to scenarios with high-order uncertainty by producing more conservative results. This improves the interpretability while simultaneously accounting for multiple comparisons. To admit ties between treatment effects in cases where differences between treatment effects are negligible, we also develop a Bayesian non-parametric approach for network meta-analysis. The approach capitalizes on the induced clustering mechanism of Bayesian non-parametric methods, producing a positive probability that two treatment effects are equal. We demonstrate the utility of the procedure through numerical experiments and a network meta-analysis designed to study antidepressant treatments.

摘要

网络荟萃分析是一种强大的工具,可综合来自独立研究的证据并同时比较多种治疗方法。进行网络荟萃分析的一项关键任务是为特定疾病结局提供所有可用治疗方案的排名。通常,估计的治疗排名伴随着大量不确定性,存在多重性问题,并且很少允许性能相似的治疗方法出现并列情况。这些问题使得解释排名变得困难,因为它们常常被视为绝对指标。为了解决这些缺点,我们制定了一种排名策略,通过产生更保守的结果来适应具有高阶不确定性的情况。这提高了可解释性,同时考虑了多重比较。为了在治疗效果差异可忽略不计的情况下承认治疗效果之间的并列情况,我们还开发了一种用于网络荟萃分析的贝叶斯非参数方法。该方法利用贝叶斯非参数方法的诱导聚类机制,产生两个治疗效果相等的正概率。我们通过数值实验和一项旨在研究抗抑郁治疗的网络荟萃分析来证明该程序的实用性。

相似文献

1
Non-parametric Bayesian approach to multiple treatment comparisons in network meta-analysis with application to comparisons of anti-depressants.
J R Stat Soc Ser C Appl Stat. 2024 Sep 2;73(5):1333-1354. doi: 10.1093/jrsssc/qlae038. eCollection 2024 Nov.
3
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
4
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.
5
Interventions for central serous chorioretinopathy: a network meta-analysis.
Cochrane Database Syst Rev. 2025 Jun 16;6(6):CD011841. doi: 10.1002/14651858.CD011841.pub3.
6
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
7
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
9
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.
Health Technol Assess. 2024 Oct;28(62):1-155. doi: 10.3310/MKRT2948.
10
Surgical interventions for treating extracapsular hip fractures in older adults: a network meta-analysis.
Cochrane Database Syst Rev. 2022 Feb 10;2(2):CD013405. doi: 10.1002/14651858.CD013405.pub2.

本文引用的文献

1
Predictive P-score for treatment ranking in Bayesian network meta-analysis.
BMC Med Res Methodol. 2021 Oct 17;21(1):213. doi: 10.1186/s12874-021-01397-5.
2
Using Normalized Entropy to Measure Uncertainty of Rankings for Network Meta-analyses.
Med Decis Making. 2021 Aug;41(6):706-713. doi: 10.1177/0272989X21999023. Epub 2021 Mar 23.
4
A comparison of arm-based and contrast-based models for network meta-analysis.
Stat Med. 2019 Nov 30;38(27):5197-5213. doi: 10.1002/sim.8360. Epub 2019 Oct 3.
5
The dark side of the force: Multiplicity issues in network meta-analysis and how to address them.
Res Synth Methods. 2020 Jan;11(1):105-122. doi: 10.1002/jrsm.1377. Epub 2019 Oct 14.
6
Borrowing of strength from indirect evidence in 40 network meta-analyses.
J Clin Epidemiol. 2019 Feb;106:41-49. doi: 10.1016/j.jclinepi.2018.10.007. Epub 2018 Oct 17.
7
Network meta-analysis: the highest level of medical evidence?
BMJ Evid Based Med. 2018 Apr;23(2):56-59. doi: 10.1136/bmjebm-2017-110887. Epub 2018 Mar 14.
8
Ranking of the most effective treatments for cardiovascular disease using SUCRA: Is it as sweet as it appears?
Eur J Prev Cardiol. 2018 May;25(8):842-843. doi: 10.1177/2047487318767199. Epub 2018 Mar 23.
9
Is providing uncertainty intervals in treatment ranking helpful in a network meta-analysis?
J Clin Epidemiol. 2018 Aug;100:122-129. doi: 10.1016/j.jclinepi.2018.02.009. Epub 2018 Feb 10.
10
Resolve conflicting rankings of outcomes in network meta-analysis: Partial ordering of treatments.
Res Synth Methods. 2017 Dec;8(4):526-536. doi: 10.1002/jrsm.1270. Epub 2017 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验