Suppr超能文献

通过定量鸟枪法质谱对酵母脂质组进行全局分析。

Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry.

作者信息

Ejsing Christer S, Sampaio Julio L, Surendranath Vineeth, Duchoslav Eva, Ekroos Kim, Klemm Robin W, Simons Kai, Shevchenko Andrej

机构信息

Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.

出版信息

Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2136-41. doi: 10.1073/pnas.0811700106. Epub 2009 Jan 27.

Abstract

Although the transcriptome, proteome, and interactome of several eukaryotic model organisms have been described in detail, lipidomes remain relatively uncharacterized. Using Saccharomyces cerevisiae as an example, we demonstrate that automated shotgun lipidomics analysis enabled lipidome-wide absolute quantification of individual molecular lipid species by streamlined processing of a single sample of only 2 million yeast cells. By comparative lipidomics, we achieved the absolute quantification of 250 molecular lipid species covering 21 major lipid classes. This analysis provided approximately 95% coverage of the yeast lipidome achieved with 125-fold improvement in sensitivity compared with previous approaches. Comparative lipidomics demonstrated that growth temperature and defects in lipid biosynthesis induce ripple effects throughout the molecular composition of the yeast lipidome. This work serves as a resource for molecular characterization of eukaryotic lipidomes, and establishes shotgun lipidomics as a powerful platform for complementing biochemical studies and other systems-level approaches.

摘要

尽管几种真核模式生物的转录组、蛋白质组和相互作用组已被详细描述,但脂质组仍相对未被充分表征。以酿酒酵母为例,我们证明了自动化鸟枪法脂质组学分析通过对仅200万个酵母细胞的单个样本进行简化处理,能够对单个分子脂质种类进行全脂质组范围的绝对定量。通过比较脂质组学,我们实现了对涵盖21种主要脂质类别的250种分子脂质种类的绝对定量。该分析提供了约95%的酵母脂质组覆盖范围,与之前的方法相比,灵敏度提高了125倍。比较脂质组学表明,生长温度和脂质生物合成缺陷会在酵母脂质组的整个分子组成中引发连锁反应。这项工作为真核脂质组的分子表征提供了资源,并将鸟枪法脂质组学确立为补充生化研究和其他系统水平方法的强大平台。

相似文献

1
Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry.
Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2136-41. doi: 10.1073/pnas.0811700106. Epub 2009 Jan 27.
2
Flexibility of a eukaryotic lipidome--insights from yeast lipidomics.
PLoS One. 2012;7(4):e35063. doi: 10.1371/journal.pone.0035063. Epub 2012 Apr 18.
3
Profiling the Mammalian Lipidome by Quantitative Shotgun Lipidomics.
Methods Mol Biol. 2023;2625:89-102. doi: 10.1007/978-1-0716-2966-6_8.
4
Uncovering the complexity of the yeast lipidome by means of nLC/NSI-MS/MS.
Anal Chim Acta. 2020 Dec 15;1140:199-209. doi: 10.1016/j.aca.2020.10.012. Epub 2020 Oct 14.
5
Global Monitoring of the Mammalian Lipidome by Quantitative Shotgun Lipidomics.
Methods Mol Biol. 2017;1609:123-139. doi: 10.1007/978-1-4939-6996-8_12.
6
Profiling of Yeast Lipids by Shotgun Lipidomics.
Methods Mol Biol. 2016;1361:309-24. doi: 10.1007/978-1-4939-3079-1_17.
9
Analysis of the Mammalian Lipidome by DMS Shotgun Lipidomics.
Methods Mol Biol. 2025;2855:357-372. doi: 10.1007/978-1-0716-4116-3_21.
10
Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome.
Biochim Biophys Acta. 2011 Dec;1811(12):1165-76. doi: 10.1016/j.bbalip.2011.07.015. Epub 2011 Jul 26.

引用本文的文献

1
Antimicrobial Peptides: Mechanisms, Applications, and Therapeutic Potential.
Infect Drug Resist. 2025 Aug 27;18:4385-4426. doi: 10.2147/IDR.S514825. eCollection 2025.
6
FORWARD GENETICS IN REVEALS GENETIC ADAPTATIONS TO POLYUNSATURATED FATTY ACID DEFICIENCY.
bioRxiv. 2025 Jun 5:2024.11.08.622646. doi: 10.1101/2024.11.08.622646.
7
Pex30-dependent membrane contact sites maintain ER lipid homeostasis.
J Cell Biol. 2025 Jul 7;224(7). doi: 10.1083/jcb.202409039. Epub 2025 May 23.
8
Cancer therapy-related cardiotoxicity is associated with distinct alterations of the myocardial lipidome.
Eur J Heart Fail. 2025 Jun;27(6):1056-1066. doi: 10.1002/ejhf.3656. Epub 2025 May 1.
9
Lipidome visualisation, comparison, and analysis in a vector space.
PLoS Comput Biol. 2025 Apr 15;21(4):e1012892. doi: 10.1371/journal.pcbi.1012892. eCollection 2025 Apr.
10
Cell membranes sustain phospholipid imbalance via cholesterol asymmetry.
Cell. 2025 May 15;188(10):2586-2602.e24. doi: 10.1016/j.cell.2025.02.034. Epub 2025 Apr 2.

本文引用的文献

1
Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast.
Nature. 2008 Oct 30;455(7217):1251-4. doi: 10.1038/nature07341. Epub 2008 Sep 28.
2
A comprehensive strategy enabling high-resolution functional analysis of the yeast genome.
Nat Methods. 2008 Aug;5(8):711-8. doi: 10.1038/nmeth.1234. Epub 2008 Jul 11.
3
Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeast.
J Lipid Res. 2008 May;49(5):909-21. doi: 10.1194/jlr.R800003-JLR200. Epub 2008 Feb 23.
4
Principles of bioactive lipid signalling: lessons from sphingolipids.
Nat Rev Mol Cell Biol. 2008 Feb;9(2):139-50. doi: 10.1038/nrm2329.
5
Informatics and computational strategies for the study of lipids.
Mol Biosyst. 2008 Feb;4(2):121-7. doi: 10.1039/b715468b. Epub 2007 Dec 18.
7
A molecular caliper mechanism for determining very long-chain fatty acid length.
Cell. 2007 Aug 24;130(4):663-77. doi: 10.1016/j.cell.2007.06.031.
8
SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast.
J Biol Chem. 2007 Oct 19;282(42):30845-55. doi: 10.1074/jbc.M702719200. Epub 2007 Aug 3.
9
Top-down lipidomic screens by multivariate analysis of high-resolution survey mass spectra.
Anal Chem. 2007 Jun 1;79(11):4083-93. doi: 10.1021/ac062455y. Epub 2007 May 3.
10
Molecular anatomy of a trafficking organelle.
Cell. 2006 Nov 17;127(4):831-46. doi: 10.1016/j.cell.2006.10.030.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验