Suppr超能文献

视紫红质激活状态下视网膜发色团的位置*

Location of the retinal chromophore in the activated state of rhodopsin*.

作者信息

Ahuja Shivani, Crocker Evan, Eilers Markus, Hornak Viktor, Hirshfeld Amiram, Ziliox Martine, Syrett Natalie, Reeves Philip J, Khorana H Gobind, Sheves Mordechai, Smith Steven O

机构信息

Departments of Physics & Astronomy and Biochemistry & Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215.

出版信息

J Biol Chem. 2009 Apr 10;284(15):10190-201. doi: 10.1074/jbc.M805725200. Epub 2009 Jan 28.

Abstract

Rhodopsin is a highly specialized G protein-coupled receptor (GPCR) that is activated by the rapid photochemical isomerization of its covalently bound 11-cis-retinal chromophore. Using two-dimensional solid-state NMR spectroscopy, we defined the position of the retinal in the active metarhodopsin II intermediate. Distance constraints were obtained between amino acids in the retinal binding site and specific (13)C-labeled sites located on the beta-ionone ring, polyene chain, and Schiff base end of the retinal. We show that the retinal C20 methyl group rotates toward the second extracellular loop (EL2), which forms a cap on the retinal binding site in the inactive receptor. Despite the trajectory of the methyl group, we observed an increase in the C20-Gly(188) (EL2) distance consistent with an increase in separation between the retinal and EL2 upon activation. NMR distance constraints showed that the beta-ionone ring moves to a position between Met(207) and Phe(208) on transmembrane helix H5. Movement of the ring toward H5 was also reflected in increased separation between the Cepsilon carbons of Lys(296) (H7) and Met(44) (H1) and between Gly(121) (H3) and the retinal C18 methyl group. Helix-helix interactions involving the H3-H5 and H4-H5 interfaces were also found to change in the formation of metarhodopsin II reflecting increased retinal-protein interactions in the region of Glu(122) (H3) and His(211) (H5). We discuss the location of the retinal in metarhodopsin II and its interaction with sequence motifs, which are highly conserved across the pharmaceutically important class A GPCR family, with respect to the mechanism of receptor activation.

摘要

视紫红质是一种高度专业化的G蛋白偶联受体(GPCR),其通过共价结合的11-顺式视黄醛发色团的快速光化学异构化而被激活。利用二维固态核磁共振光谱,我们确定了视黄醛在活性视紫红质II中间体中的位置。获得了视黄醛结合位点中的氨基酸与位于视黄醛的β-紫罗兰酮环、多烯链和席夫碱末端的特定(13)C标记位点之间的距离限制。我们表明,视黄醛C20甲基朝向第二个细胞外环(EL2)旋转,该环在非活性受体中的视黄醛结合位点上形成一个帽。尽管甲基的轨迹如此,但我们观察到C20-Gly(188)(EL2)距离增加,这与激活后视黄醛和EL2之间的分离增加一致。核磁共振距离限制表明,β-紫罗兰酮环移动到跨膜螺旋H5上的Met(207)和Phe(208)之间的位置。环向H5的移动也反映在Lys(296)(H7)和Met(44)(H1)的Cε碳之间以及Gly(121)(H3)和视黄醛C18甲基之间的分离增加。还发现涉及H3-H5和H4-H5界面的螺旋-螺旋相互作用在视紫红质II的形成中发生变化,这反映了在Glu(122)(H

相似文献

1
Location of the retinal chromophore in the activated state of rhodopsin*.
J Biol Chem. 2009 Apr 10;284(15):10190-201. doi: 10.1074/jbc.M805725200. Epub 2009 Jan 28.
2
Location of Trp265 in metarhodopsin II: implications for the activation mechanism of the visual receptor rhodopsin.
J Mol Biol. 2006 Mar 17;357(1):163-72. doi: 10.1016/j.jmb.2005.12.046. Epub 2006 Jan 3.
4
Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy.
Biochim Biophys Acta. 2010 Feb;1798(2):177-93. doi: 10.1016/j.bbamem.2009.08.013. Epub 2009 Aug 28.
5
Coupling of retinal isomerization to the activation of rhodopsin.
Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10048-53. doi: 10.1073/pnas.0402848101. Epub 2004 Jun 25.
6
Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation.
Nat Struct Mol Biol. 2009 Feb;16(2):168-75. doi: 10.1038/nsmb.1549. Epub 2009 Feb 1.
8
Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization.
J Biol Chem. 2004 Nov 12;279(46):48102-11. doi: 10.1074/jbc.M406857200. Epub 2004 Aug 20.

引用本文的文献

1
Interdisciplinary biophysical studies of membrane proteins bacteriorhodopsin and rhodopsin.
Biophys Rev. 2022 Oct 8;15(1):111-125. doi: 10.1007/s12551-022-01003-y. eCollection 2023 Feb.
2
Magic angle spinning NMR of G protein-coupled receptors.
Prog Nucl Magn Reson Spectrosc. 2022 Feb;128:25-43. doi: 10.1016/j.pnmrs.2021.10.002. Epub 2021 Nov 1.
3
A Mechanistic Review of β-Carotene, Lutein, and Zeaxanthin in Eye Health and Disease.
Antioxidants (Basel). 2020 Oct 26;9(11):1046. doi: 10.3390/antiox9111046.
5
Quantum Mechanical and Molecular Mechanics Modeling of Membrane-Embedded Rhodopsins.
J Membr Biol. 2019 Oct;252(4-5):425-449. doi: 10.1007/s00232-019-00095-0. Epub 2019 Sep 30.
8
Lipids Alter Rhodopsin Function via Ligand-like and Solvent-like Interactions.
Biophys J. 2018 Jan 23;114(2):355-367. doi: 10.1016/j.bpj.2017.11.021.
9
Chlorophyll-Derivative Modulation of Rhodopsin Signaling Properties through Evolutionarily Conserved Interaction Pathways.
Front Mol Biosci. 2017 Dec 12;4:85. doi: 10.3389/fmolb.2017.00085. eCollection 2017.
10
Model structures of inactive and peptide agonist bound C5aR: Insights into agonist binding, selectivity and activation.
Biochem Biophys Rep. 2015 Mar 24;1:85-96. doi: 10.1016/j.bbrep.2015.03.002. eCollection 2015 May.

本文引用的文献

1
Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation.
Nat Struct Mol Biol. 2009 Feb;16(2):168-75. doi: 10.1038/nsmb.1549. Epub 2009 Feb 1.
2
Crystal structure of opsin in its G-protein-interacting conformation.
Nature. 2008 Sep 25;455(7212):497-502. doi: 10.1038/nature07330.
3
Crystal structure of the ligand-free G-protein-coupled receptor opsin.
Nature. 2008 Jul 10;454(7201):183-7. doi: 10.1038/nature07063. Epub 2008 Jun 18.
4
High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation.
Proc Natl Acad Sci U S A. 2008 May 27;105(21):7439-44. doi: 10.1073/pnas.0802515105. Epub 2008 May 19.
5
Dynamic structure of retinylidene ligand of rhodopsin probed by molecular simulations.
J Mol Biol. 2007 Sep 28;372(4):906-917. doi: 10.1016/j.jmb.2007.06.047. Epub 2007 Jun 26.
6
Structural analysis and dynamics of retinal chromophore in dark and meta I states of rhodopsin from 2H NMR of aligned membranes.
J Mol Biol. 2007 Sep 7;372(1):50-66. doi: 10.1016/j.jmb.2007.03.046. Epub 2007 Mar 24.
7
Crystal structure of a photoactivated deprotonated intermediate of rhodopsin.
Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16123-8. doi: 10.1073/pnas.0608022103. Epub 2006 Oct 23.
8
Local peptide movement in the photoreaction intermediate of rhodopsin.
Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12729-34. doi: 10.1073/pnas.0601765103. Epub 2006 Aug 14.
9
Quantum mechanical studies on the crystallographic model of bathorhodopsin.
Angew Chem Int Ed Engl. 2006 Jun 26;45(26):4274-7. doi: 10.1002/anie.200600585.
10
Conformational states and dynamics of rhodopsin in micelles and bilayers.
Biochemistry. 2006 May 2;45(17):5538-50. doi: 10.1021/bi060101v.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验