Suppr超能文献

从动态级联中进行高效网络重建可识别神经元雪崩的小世界拓扑结构。

Efficient network reconstruction from dynamical cascades identifies small-world topology of neuronal avalanches.

作者信息

Pajevic Sinisa, Plenz Dietmar

机构信息

Division of Computational Bioscience, Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, Maryland, United States of America.

出版信息

PLoS Comput Biol. 2009 Jan;5(1):e1000271. doi: 10.1371/journal.pcbi.1000271. Epub 2009 Jan 30.

Abstract

Cascading activity is commonly found in complex systems with directed interactions such as metabolic networks, neuronal networks, or disease spreading in social networks. Substantial insight into a system's organization can be obtained by reconstructing the underlying functional network architecture from the observed activity cascades. Here we focus on Bayesian approaches and reduce their computational demands by introducing the Iterative Bayesian (IB) and Posterior Weighted Averaging (PWA) methods. We introduce a special case of PWA, cast in nonparametric form, which we call the normalized count (NC) algorithm. NC efficiently reconstructs random and small-world functional network topologies and architectures from subcritical, critical, and supercritical cascading dynamics and yields significant improvements over commonly used correlation methods. With experimental data, NC identified a functional and structural small-world topology and its corresponding traffic in cortical networks with neuronal avalanche dynamics.

摘要

级联活动常见于具有定向相互作用的复杂系统中,如代谢网络、神经网络或社交网络中的疾病传播。通过从观察到的活动级联中重建潜在的功能网络架构,可以深入了解系统的组织。在这里,我们专注于贝叶斯方法,并通过引入迭代贝叶斯(IB)和后验加权平均(PWA)方法来降低其计算需求。我们引入了PWA的一种特殊情况,以非参数形式表示,我们称之为归一化计数(NC)算法。NC能有效地从亚临界、临界和超临界级联动力学中重建随机和小世界功能网络拓扑及架构,并且比常用的相关方法有显著改进。利用实验数据,NC识别出了具有神经元雪崩动力学的皮质网络中的功能和结构小世界拓扑及其相应的信息流。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b76a/2615076/6077613fad69/pcbi.1000271.g001.jpg

相似文献

1
Efficient network reconstruction from dynamical cascades identifies small-world topology of neuronal avalanches.
PLoS Comput Biol. 2009 Jan;5(1):e1000271. doi: 10.1371/journal.pcbi.1000271. Epub 2009 Jan 30.
2
Statistical properties of avalanches in networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066131. doi: 10.1103/PhysRevE.85.066131. Epub 2012 Jun 28.
3
Self-organization and neuronal avalanches in networks of dissociated cortical neurons.
Neuroscience. 2008 Jun 2;153(4):1354-69. doi: 10.1016/j.neuroscience.2008.03.050. Epub 2008 Mar 29.
4
Structural Modularity Tunes Mesoscale Criticality in Biological Neuronal Networks.
J Neurosci. 2023 Apr 5;43(14):2515-2526. doi: 10.1523/JNEUROSCI.1420-22.2023. Epub 2023 Mar 3.
5
Undersampled critical branching processes on small-world and random networks fail to reproduce the statistics of spike avalanches.
PLoS One. 2014 Apr 21;9(4):e94992. doi: 10.1371/journal.pone.0094992. eCollection 2014.
6
Variability v.s. synchronicity of neuronal activity in local cortical network models with different wiring topologies.
J Comput Neurosci. 2007 Oct;23(2):237-50. doi: 10.1007/s10827-007-0030-1. Epub 2007 Apr 6.
7
Small-world networks in neuronal populations: a computational perspective.
Neural Netw. 2013 Aug;44:143-56. doi: 10.1016/j.neunet.2013.04.003. Epub 2013 Apr 15.
8
Universal critical dynamics in high resolution neuronal avalanche data.
Phys Rev Lett. 2012 May 18;108(20):208102. doi: 10.1103/PhysRevLett.108.208102. Epub 2012 May 16.
9
Hierarchical organization unveiled by functional connectivity in complex brain networks.
Phys Rev Lett. 2006 Dec 8;97(23):238103. doi: 10.1103/PhysRevLett.97.238103.
10
Neuronal avalanche dynamics and functional connectivity elucidate information propagation .
Front Neural Circuits. 2022 Sep 15;16:980631. doi: 10.3389/fncir.2022.980631. eCollection 2022.

引用本文的文献

1
Neuronal avalanche dynamics regulated by spike-timing-dependent plasticity under different topologies and heterogeneities.
Cogn Neurodyn. 2024 Jun;18(3):1307-1321. doi: 10.1007/s11571-023-09966-8. Epub 2023 Apr 18.
2
Ensemble learning and ground-truth validation of synaptic connectivity inferred from spike trains.
PLoS Comput Biol. 2024 Apr 29;20(4):e1011964. doi: 10.1371/journal.pcbi.1011964. eCollection 2024 Apr.
3
A framework for reconstructing transmission networks in infectious diseases.
Appl Netw Sci. 2022;7(1):85. doi: 10.1007/s41109-022-00525-4. Epub 2022 Dec 19.
4
Neuronal avalanche dynamics and functional connectivity elucidate information propagation .
Front Neural Circuits. 2022 Sep 15;16:980631. doi: 10.3389/fncir.2022.980631. eCollection 2022.
5
Social diffusion sources can escape detection.
iScience. 2022 Aug 19;25(9):104956. doi: 10.1016/j.isci.2022.104956. eCollection 2022 Sep 16.
6
Long-term stability of avalanche scaling and integrative network organization in prefrontal and premotor cortex.
Netw Neurosci. 2021 Jun 3;5(2):505-526. doi: 10.1162/netn_a_00188. eCollection 2021.
7
Criticality, Connectivity, and Neural Disorder: A Multifaceted Approach to Neural Computation.
Front Comput Neurosci. 2021 Feb 10;15:611183. doi: 10.3389/fncom.2021.611183. eCollection 2021.
8
Cyclic transitions between higher order motifs underlie sustained asynchronous spiking in sparse recurrent networks.
PLoS Comput Biol. 2020 Sep 30;16(9):e1007409. doi: 10.1371/journal.pcbi.1007409. eCollection 2020 Sep.
9
Connectomics of Morphogenetically Engineered Neurons as a Predictor of Functional Integration in the Ischemic Brain.
Front Neurol. 2019 Jun 12;10:630. doi: 10.3389/fneur.2019.00630. eCollection 2019.
10
Network reconstruction from infection cascades.
J R Soc Interface. 2019 Feb 28;16(151):20180844. doi: 10.1098/rsif.2018.0844.

本文引用的文献

1
Partial Granger causality--eliminating exogenous inputs and latent variables.
J Neurosci Methods. 2008 Jul 15;172(1):79-93. doi: 10.1016/j.jneumeth.2008.04.011. Epub 2008 Apr 20.
2
Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3.
Proc Natl Acad Sci U S A. 2008 May 27;105(21):7576-81. doi: 10.1073/pnas.0800537105. Epub 2008 May 22.
3
Self-organization and neuronal avalanches in networks of dissociated cortical neurons.
Neuroscience. 2008 Jun 2;153(4):1354-69. doi: 10.1016/j.neuroscience.2008.03.050. Epub 2008 Mar 29.
4
A small world of neuronal synchrony.
Cereb Cortex. 2008 Dec;18(12):2891-901. doi: 10.1093/cercor/bhn047. Epub 2008 Apr 9.
5
A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro.
J Neurosci. 2008 Jan 9;28(2):505-18. doi: 10.1523/JNEUROSCI.3359-07.2008.
6
Homeostasis of neuronal avalanches during postnatal cortex development in vitro.
J Neurosci Methods. 2008 Apr 30;169(2):405-16. doi: 10.1016/j.jneumeth.2007.10.021. Epub 2007 Nov 7.
8
Identification and classification of hubs in brain networks.
PLoS One. 2007 Oct 17;2(10):e1049. doi: 10.1371/journal.pone.0001049.
9
Spreading gossip in social networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 2):036117. doi: 10.1103/PhysRevE.76.036117. Epub 2007 Sep 27.
10
A simple growth model constructs critical avalanche networks.
Prog Brain Res. 2007;165:13-9. doi: 10.1016/S0079-6123(06)65002-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验